База ответов ИНТУИТ

Алгоритмы интеллектуальной обработки больших объемов данных

<<- Назад к вопросам

На электронную почту пришло письмо. Пусть X – бинарный признак, указывающий, содержит входящее письмо сочетание слов "вам оставили наследство" (=1), или нет(=0), а Y – класс письма, указывающий, спам это (=1), или нет (=0). Известно, что P(Y=1)=0,05, P(X=1|Y=1)=0,0001, P(X=1|Y=0)=0,00001, и в письме присутствует указанное словосочетание. Каким решающим правилом нужно воспользоваться – максимального правдоподобия (ML) или апостериорного максимума (MAP), чтобы определить, пришедшее письмо – спам или нет:

(Отметьте один правильный вариант ответа.)

Варианты ответа
ML: письмо - спам.
MAP: письмо не спам.(Верный ответ)
Ни ML, ни MAP применить нельзя.
MAP: письмо - спам.
ML: письмо не спам.
Похожие вопросы
На электронную почту пришло два подозрительных письма, одно из них (A) содержало слово "лотерея", второе (B) – слова "лекарство" и "похудение". Дано, что спам составляет 3% писем, доля писем, где встречается слово "лотерея": спам - 0,04%, не спам – 0,01%; слово "лекарство": спам - 0,02%, не спам – 0,01%; слово "похудение": спам - 0,01%, не спам - 0,0005%. Пользуясь наивным байесовским классификатором (Naive Bayes) с правдоподобием Бернулли (BernoulliNB), определить, какие из полученных писем являются спамом.
Михаил получает на электронную почту в среднем 1000 писем в месяц, из них 2,44% - это спам. Известно, что среди спама слово "знакомство" встречается в 0,01% писем, а среди обычных писем в 10 раз реже. Какова вероятность того, что письмо, попавшее на почтовый ящик Михаила, в тексте которого встречается указанное слово, не является спамом? (Ответ укажите в целых процентах без знака процента.)
Даны четыре примера (наблюдения) в трехмерном пространстве признаков: A(1;4;10), B(2;5;6), C(1;3;8) и D(2;4;8), при этом известно, что первый и третий примеры относятся к классу "1", а второй и четвертый – к классу "0". Для обучения на данных примерах применяется алгоритм случайный лес (random forest). Случайным образом были выбраны 5 наборов примеров и признаков: (1) пример 1 (признаки 1,2) + пример 2 (признаки 1,3); (2) пример 3 (признаки 2,3) + пример 4 (признак 1); (3) пример 2 (признаки 1,2,3) + пример 3 (признак 1); (4) пример 1 (признаки 1,3) + пример 2 (признак 1) + пример 3 (признак 3); (5) пример 1 (признаки 2,3) + пример 4 (признаки 2,3). Для этих пяти наборов были построены соответственно пять деревьев по алгоритму CART, нечистота (impurity) вычислялась по Джини. Принадлежность к классу определяется голосованием – числом деревьев, которые отнесли тот или иной пример к определенному классу. Сколько деревьев отнесут тестовый пример F(2;3;6) к классу "0"? (Напишите ответ в виде целого числа.)
Для чего используется логарифм правдоподобия Бернулли?
Даны четыре примера (наблюдения) в трехмерном пространстве признаков: A(1;4;10), B(2;5;6), C(1;3;8) и D(2;4;8), при этом известно, что первый и третий примеры относятся к классу "1", а второй и четвертый – к классу "0". Проведите процедуру отбора признаков (feature selection) методом minimum redundancy maximum relevance (mRMR), используя логарифм по основанию 2. Укажите, какие признаки нужно оставить:
Дома на четной стороне улицы имеют номера 2, 4, 6, … . Номер дома – это признак:
В документе d слово "кластер" встречается с частотой TF("кластер",d)=0,0125. Мы имеем возможность программным образом изучить миллион документов, и выяснить, что указанное слово встречается только в 100 из них. Вычислите TF-IDF слова "кластер" в документе d с точностью до двух знаков после запятой:
Рассмотрим многослойный персептрон, состоящий из вытянутых в линейную цепочку 10 нейронов (один из них входной, один выходной, а 8 образуют 8 скрытых слоев). Для коррекции весов используется алгоритм обратного распространения ошибки (back propagation). Функция ошибки среднеквадратическая. Значения весов и ошибка на выходе не превышают по модулю единицы. Выберите, при каких значениях сигнала на входе градиент на входе может превысить 0,0001.
Принцип Maximum Likelihood $p(y1,x)=p(y1)p(x|y1)=\pi N(x|\mu 1,\sum)p(y2,x)=p(y2)p(x|y2)=(1-\pi) N(x|\mu 2,\sum)$. Функция правдоподобия $p(Y,X|\pi ,\mu 1,\mu 2,\sum)=N\qquad n=1\qquad [\pi N(x|\mu 1,\sum)]\quad yn[(1-\pi)N(x|\mu 2,\sum)]\quad 1-yn.$. Максимизируя $log p()Y,X|\pi ,\mu 1,\mu 2,\sum)$, в результате имеем одну из составляющих ?
Класс алгоритмов, являющийся элегантной идей по построению разделяющей поверхности, а также осуществляющий переход в новое пространство значительно дешевле, чем вычисление всех обучающие объектов в новом пространстве напрямую: