База ответов ИНТУИТ

Введение в методы параллельного программирования

<<- Назад к вопросам

Пусть есть задача вычисление суммы следующего вида y=\sum\limits_{i=1}^N a_ib_i. Пусть N = 8 и применяется каскадная схема, аналогичная схеме описанной в лекции для суммирования элементов вектора. Какая в этом случае минимально возможная высота дерева модели вычисления:

(Отметьте один правильный вариант ответа.)

Варианты ответа
3
4(Верный ответ)
5
Похожие вопросы
Пусть есть задача вычисление суммы следующего вида y=\sum\limits_{i=1}^N a_ib_ic_i. Пусть N = 4 и применяется каскадная схема, аналогичная схеме описанной в лекции для суммирования элементов вектора. Какая в этом случае минимально возможная высота дерева модели вычисления:
Пусть есть задача вычисления произведения всех элемента вектора y= \prod\limits_{i=1}^N a_i. Пусть N = 10 и применяется каскадная схема, аналогичная схеме описанной в лекции для суммирования элементов вектора. Какая в этом случае минимально возможная высота дерева модели вычисления:
Пусть есть задача вычисления суммы следующего вида y=\sum\limits_{i=1}^N a_ib_i. Пусть N = 8 и применяется каскадная схема с минимально возможной высотой дерева модели вычисления. Чему в этом случае равна эффективность при использовании восьми вычислительных элементов:
Пусть есть задача вычисления суммы следующего вида y=\sum\limits_{i=1}^N a_i. Пусть N = 6 и применяется каскадная схема с минимально возможной высотой дерева модели вычисления. Чему в этом случае равна стоимость вычислений при использовании восьми вычислительных элементов:
Пусть есть задача вычисления произведения всех элемента вектора y= \prod\limits_{i=1}^N a_i. Пусть N = 6 и применяется каскадная схема с минимально возможной высотой дерева модели вычисления. Чему в этом случае равно ускорение при использовании неограниченного числа вычислительных элементов:
Рассмотрим задачу поиска решения системы линейных уравнений. Пусть размер матрицы системы линейных уравнений 100x100. На вычислительной системе все операции сложения и умножения выполняются одинаковое время \tau = 2 нсек. Латентности сети \alpha = 50 нсек. Пропускная способность сети \beta = 60 Mбайт/сек. Элементы матрицы системы линейных уравнений имеют тип double и занимают w = 8 байт. Если при распараллеливании алгоритма Гауса использовалось 4 процессора, то какая в этом случае достигается теоретическая эффективность:
Рассмотрим задачу поиска решения системы линейных уравнений. Пусть размер матрицы системы линейных уравнений 200x200. На вычислительной системе все операции сложения и умножения выполняются одинаковое время \tau = 2 нсек. Латентности сети \alpha = 50 нсек. Пропускная способность сети \beta = 50 Mбайт/сек. Элементы матрицы системы линейных уравнений имеют тип double и занимают w = 8 байт. Если при распараллеливании алгоритма сопряженных градиентов использовалось 4 процессора, то какая в этом случае достигается теоретическая эффективность:
Рассмотрим задачу поиска решения системы линейных уравнений. Пусть размер матрицы системы линейных уравнений 20x20. На вычислительной системе все операции сложения и умножения выполняются одинаковое время \tau = 2 нсек. Латентности сети \alpha = 50 нсек. Пропускная способность сети \beta = 60 Mбайт/сек. Элементы матрицы системы линейных уравнений имеют тип double и занимают w = 8 байт. Если при распараллеливании алгоритма сопряженных градиентов использовалось 4 процессора, то какая в этом случае достигается теоретическая стоимость параллельного алгоритма:
Рассмотрим задачу поиска решения системы линейных уравнений. Пусть размер матрицы системы линейных уравнений 100x100. На вычислительной системе все операции сложения и умножения выполняются одинаковое время \tau = 2 нсек. Латентности сети \alpha = 500 нсек. Пропускная способность сети \beta = 50 Mбайт/сек. Элементы матрицы системы линейных уравнений имеют тип double и занимают w = 8 байт. Если при распараллеливании алгоритма Гаусса использовалось 4 процессора, то какое в этом случае достигается теоретическое ускорение:
Рассмотрим задачу поиска решения системы линейных уравнений. Пусть размер матрицы системы линейных уравнений 100x100. На вычислительной системе все операции сложения и умножения выполняются одинаковое время \tau = 2 нсек. Латентности сети \alpha = 5 нсек. Пропускная способность сети \beta = 500 Mбайт/сек. Элементы матрицы системы линейных уравнений имеют тип double и занимают w = 8 байт. Если при распараллеливании алгоритма сопряженных градиентов использовалось 4 процессора, то какое в этом случае достигается теоретическое ускорение: