База ответов ИНТУИТ

Введение в схемы, автоматы и алгоритмы

<<- Назад к вопросам

Пусть множество A = { (x2, y2) | x ∈ N , y ∈ N }, B = { n3 | n ∈ N }.Какие из следующих функций осуществляют сведение A ≤m B ? (В выражениях ниже sqr(x) обозначает целую часть квадратного корня из x, sg(0) =0 иsg(n) = 1 при n > 0).

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
f(x,y) = (x+2)3 + sg( x2 – sqr(x)2 ) + sg( y2 – sqr(y)2 )(Верный ответ)
f(x,y) = 8 + sg( x2 – sqr(x)2 + y2 –sqr(y)2 )(Верный ответ)
f(x,y) = sqr(x)3 sqr(y)3
f(x,y) = x3y3
f(x,y) = (sqr(x) + sqr(y))3
Похожие вопросы
Пусть множество A = { (x, y) | y = x2 }, B = { 2n | n ∈ N }.Какие из следующих функций осуществляют сведение A ≤m B ? (В выражениях ниже sqr(y) обозначает целую часть квадратного корня из y, sg(0) =0 иsg(n) = 1 при n > 0).
Пусть множество A = { (x, y) | y = x2 }, B = { n3 | n ∈ N }.Какие из следующих функций осуществляют сведение A ≤m B ? (В выражениях ниже sqr(y) обозначает целую часть квадратного корня из y, sg(0) =0 и sg(n) = 1 при n > 0).
Пусть П× - это программа, которая вычисляет функцию Ф× (x,y) = x·y в переменной x, используя две рабочих переменных z и i Какие из следующих структурированных программ П1, П2, П3 вычисляют в переменной x целую часть частного [ x/y] (пусть при y=0 результат равен 0)?
Пусть задана линейная программа P со входными переменными X1, X2, X3:
  • Y = ¬X1;
  • Z = ¬X2;
  • U = ¬X3;
  • V = X1 ∧ X2;
  • Z = Y ∧ Z;
  • W= Y ∧ X2;
  • Z = Z ∧ W ;
  • V = V ∧ U ;
  • Z = Z ∨ V.
  • Постройте логическую схему SP со входами X1, X2, X3 и функциональными вершинами, соответствующими командам P, вычисляющую ту же функцию, что и P в выходной переменной Z. Чему равна ее глубина?
    Пусть задана линейная программа P со входными переменными X1, X2, X3:
  • Y = X1 ∨ X2;
  • Z = X1 ∨ X3;
  • U = ¬X3;
  • Y = Y ∧ Z;
  • W = X2 ∨ X3;
  • U = X2 ∨ U;
  • Z = W ∨ Y ;
  • Z = U ∧ Y.
  • Постройте логическую схему SP со входами X1, X2, X3 и функциональными вершинами, соответствующими командам P, вычисляющую ту же функцию, что и P в выходной переменной Z. Чему равна ее глубина?
    Пусть задана линейная программа P со входными переменными X1, X2, X3:
  • Y = ¬X1;
  • Z = ¬X2;
  • U = ¬X3;
  • Y = Y ∧ X2;
  • W = X2 ∧ X3;
  • Y = Y ∧ U;
  • Y = W ∨ Y ;
  • Z = Z ∨ Y.
  • Постройте логическую схему SP со входами X1, X2, X3 и функциональными вершинами, соответствующими командам P, вычисляющую ту же функцию, что и P в выходной переменной Z. Чему равна ее глубина?
    В доказательстве теоремы 20.2 для построения м.Т MП, моделирующей работу структурированной программы П с переменными x1, … , xm, используются м.Т. Mij (1 ≤ i, j ≤ m), которые реализуют присваивание xi := xj, т.е. переписывают содержимое j-го этажа ленты на i-ый. Пусть m=4, i=2, j=4. Пусть Σ = { < a1, a2, a3, a4> | ai ∈ {∧, |}, i=1,2,3,4 } – алфавит ленты, а Q={ q, s, p },– множество состояний M24, в котором q - начальное, а p – заключительное состояние.Какие из следующих программ могут быть использованы в качестве программы для M24 ?(В текстах программ a,b,c,d – это произвольные символы из алфавита{∧, |})
  • P1: q <a, b, c, |> →​ q <a, | , c, | > П , s <a, | , c, | > →​ s <a, | , c, | > Л , q <a, |, c, ∧> →​ q <a, ∧ , c, ∧> П , s <∧, ∧, ∧, ∧> →​ p <∧, ∧ , ∧, ∧> П. q <a, ∧, c, ∧> →​ s <a, ∧ , c, ∧> Л ,
  • P2: q <a, |, c, d> →​ q <a, | , c, | > П , s <a, | , c, | > →​ s <a, | , c, | > Л , q <a, ∧, c, |> →​ q <a, ∧ , c, ∧> П , s <a, ∧, c, ∧> →​ p <a, ∧ , c, ∧> П. q <a, ∧, c, ∧> →​ s <a, ∧ , c, ∧> Л ,
  • P3: q <a, b, c, |> →​ q <a, | , c, | > П , s <a, | , c, | > →​ s <a, | , c, | > Л , q <a, b, c, ∧> →​ s <a, ∧ , c, ∧> Л , s <a, ∧, c, ∧> →​ p <a, ∧ , c, ∧> П.
  • В доказательстве теоремы 20.2 для построения м.Т MП, моделирующей работу структурированной программы П с переменными x1, … , xm, используются м.Т. Mij (1 ≤ i, j ≤ m), которые реализуют присваивание xi := xj, т.е. переписывают содержимое j-го этажа ленты на i-ый. Пусть m=4, i=3, j=1. Пусть Σ = { < a1, a2, a3, a4> | ai ∈ {∧, |}, i=1,2,3,4 } – алфавит ленты, а Q={ q, s, p },– множество состояний M43, в котором q - начальное, а p – заключительное состояние.Какие из следующих программ могут быть использованы в качестве программы для M43 ?(В текстах программ a,b,c,d – это произвольные символы из алфавита{∧, |})
  • P1: q <a, b, |, d > →​ q < a, b , |, | > П , s < a, ,b | , | > →​ s < a, b, | , | > Л , q < ∧, b, ∧, d> →​ s < ∧ , b, ∧, d > Л , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П ,
  • P2: : q <a, b, c, | > →​ q < a, b , c, | > П , s < a , b, |, d > →​ s < a , b, |, | > Л , q <a, b, |, d > →​ q < a, b, |, d > П , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П. q <a, b, ∧, ∧> →​ s < a , b, ∧, ∧ > Л , s < a , b, ∧, | > →​ s < a , b, ∧, ∧ > Л,
  • P3: : q <a, b, |, d > →​ q < a, b , |, | > П , s < a, ,b | , | > →​ s < a, b, | , | > Л , q <a, b, ∧, | > →​ q < a, b, ∧, ∧ > П , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П. q < ∧, b, ∧, d> →​ s < ∧ , b, ∧, d > Л ,
  • В доказательстве теоремы 20.2 для построения м.Т MП, моделирующей работу структурированной программы П с переменными x1, … , xm, используются м.Т. Mij (1 ≤ i, j ≤ m), которые реализуют присваивание xi := xj, т.е. переписывают содержимое j-го этажа ленты на i-ый. Пусть m=4, i=3, j=1. Пусть Σ = { < a1, a2, a3, a4> | ai ∈ {∧, |}, i=1,2,3,4 } – алфавит ленты, а Q={ q, s, p },– множество состояний M31, в котором q - начальное, а p – заключительное состояние.Какие из следующих программ могут быть использованы в качестве программы для M31 ?(В текстах программ a,b,c,d – это произвольные символы из алфавита{∧, |})
  • P1: q <|, b, c, d > →​ q < |, b , |, d > П , s < | , b, |, d > →​ s < | , b, |, d > Л , q <∧, b, |, d > →​ q < ∧, b, ∧, d > П , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П. q < ∧, b, ∧, d> →​ s < ∧ , b, ∧, d > Л ,
  • P2: : q <|, b, c, d > →​ q < |, b , c, d > П , s < ∧ , b, |, d > →​ s < | , b, ∧, d > Л , q <a, b, |, d > →​ q < a, b, |, d > П , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П. q < ∧, b, ∧, d> →​ s < ∧ , b, ∧, d > Л , s < | , b, c, d > →​ s < | , b, |, d > Л ,
  • P3: : q <|, b, c, d > →​ q < |, b , |, d > П , s < | , b, |, d > →​ s < | , b, |, d > Л , q < ∧, b, ∧, d> →​ s < ∧ , b, ∧, d > Л , s < ∧, ∧, ∧, ∧> →​ p < ∧, ∧, ∧, ∧> П.
  • Пусть c2(x, y) = 2x(2y+1) -1 - это функция нумерации пар, а c21(z) и c22(z) - это соответствующие обратные функции такие, что c2(c21(z), c22(z)) = z для всех z. Примитивную рекурсивность этих функций можно использовать для установления рекурсивности функций, значения которых на аргументе (y+1) зависят от их значений в двух предыдущих точках y-1 и y. Рассмотрим функцию F(x), заданную равенствами:F(0) = 0, F(1) = 1, F(y+2) = F(y) + F(y+1) +1. Положим G(y) = c2(F(y), F(y+1)). Так какF(y) = c21(G(y)), то для доказательства примитивной рекурсивности F достаточно установить примитивную рекурсивность G. Определите, какая из следующих примитивных рекурсий задает G.