База ответов ИНТУИТ

Математический анализ

<<- Назад к вопросам

Пусть \left\{a_n=n\quad n=1,2,\ldots\right\}, P - множество частичных пределов \left\{a_n\right\}. Какие утверждения верны:

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
\left\{a_n\right\} ограничена сверху
P=\varnothing(Верный ответ)
\left\{a_n\right\} сходится
\left\{a_n\right\} неубывающая(Верный ответ)
P\neq\varnothing
Похожие вопросы
Пусть \left\{a_n=(-1)^n\quad n=1,2,\ldots\right\}, P - множество частичных пределов \left\{a_n\right\}. Какие утверждения верны:
Пусть числовая последовательность \left\{a_n\right\} сходится и \lim_{n\rightarrow\infty}a_n=a. P -множество частичных пределов \left\{a_n\right\}. Какие утверждения верны:
Пусть числовая последовательность \left\{a_n\right\} ограничена. P - множество частичных пределов последовательности \left\{a_n\right\}. Какие утверждения верны:
Пусть числовая последовательность \left\{a_n\right\} ограничена. P - множество частичных пределов последовательности \left\{a_n\right\}. Какие утверждения верны:
Пусть числовая последовательность \left\{a_n\right\} ограничена. P - множество частичных пределов последовательности \left\{a_n\right\}. Какие утверждения верны:
Пусть числовая последовательность \left\{a_n\right\},P - множество частичных пределов \left\{a_n\right\}. Верхний предел числовой последовательности \overline{\lim_{n\rightarrow\infty}a_n} - это
Пусть числовая последовательность \left\{a_n\right\},P - множество частичных пределов \left\{a_n\right\}. Верхний предел числовой последовательности \overline{\lim_{n\rightarrow\infty}a_n} - это
Точка x^0 является точкой локального максимума для функции f:C\rightarrow R,\quad C \subset R^k при условиях g_1(x)=0,\ldots g_m(x)=0, если для x^0\in C\cap M,\quad M=\left\{x\in R^k:g_1(x)=0,\ldots g_m(x)=0\right\} существует окрестность U_{\delta}(x^0):
Точка x^0 является точкой локального минимума для функции f:C\rightarrow R,\quad C \subset R^k при условиях g_1(x)=0,\ldots g_m(x)=0, если для x^0\in C\cap M,\quad M=\left\{x\in R^k:g_1(x)=0,\ldots g_m(x)=0\right\} существует окрестность U_{\delta}(x^0):
Пусть числовые последовательности \left\{a_n\right\} и \left\{b_n\right\} сходятся и \lim_{n\rightarrow\infty}a_n=a,\quad\lim_{n\rightarrow\infty}b_n=b. Тогда последовательность \left\{a_n\cdot b_n\right\} сходится и ее предел равен