База ответов ИНТУИТ

Основы математической статистики

<<- Назад к вопросам

Выборка X_1,\ldots,X_n имеет равномерное распределение R(a,b) , а выборка Y_1,\ldots,Y_k имеет равномерное распределение R(c,d) . В каком случае эти выборки будут являться однородными?

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
если b=d
эти выборки неоднородны при любых условиях на параметры их распределений
если n=k
эти выборки являются однородными
если M(X)=M(Y) и D(X)=D(Y)(Верный ответ)
если a=cи b=d(Верный ответ)
если a=c
Похожие вопросы
Выборка  X_1,\ldots,X_n \:\sim \:N(\theta_1, \theta_2^2), а выборка Y_1,\ldots,Y_k имеет равномерное распределение R(a,b) . В каком случае эти выборки будут являться однородными?
Пусть выборка  X_1,\ldots,X_n \:\sim \:F(t), а выборка Y_1,\ldots,Y_k \:\sim \:F(t+\theta). Для проверки гипотезы H_0\:\::\theta=0 применяют критерий Вилкоксона и критерий Стьюдента. Известно, что распределение F(t) - непрерывное распределение с нулевой медианой. Чему равна нижняя граница e(W,t) АОЭ (асимптотической относительной эффективности) по Питмену критерия Вилкоксона по отношению к критерию Стьюдента?
Пусть выборка X_1,\ldots,X_n \:\sim \:F(t), а выборка Y_1,\ldots,Y_k \:\sim \:F(t+\theta). Для проверки гипотезы H_0\:\::\theta=0 применяют критерий Вилкоксона и критерий Стьюдента. Известно, что распределение F(t)-это распределение Тьюки ("загрязненное" нормальное распределение) с параметром "загрязнения" равным 0.05. АОЭ (асимптотическая относительная эффективность) по Питмену критерия Вилкоксона по отношению к критерию Стьюдента при описанных условиях будет:
Рассматриваются две независимые гауссовские выборки  X_1,\ldots,X_n \:\sim \:N(m_1, \sigma_1^2) и Y_1,\ldots,Y_k \:\sim \:N(m_2, \sigma_2^2) . Параметры m_1,m_2,\sigma_1,\sigma_2 неизвестны. Пусть S_1^2-выборочная дисперсия первой выборки, S_2^2-выборочная дисперсия второй выборки. Какое распределение имеет статистика S_1^2/ S_2^2 в случае, когда дисперсии первой и второй выборок одинаковы?
Рассматриваются две независимые гауссовские выборки  X_1,\ldots,X_n \:\sim \:N(m_1, \sigma^2) и  Y_1,\ldots,Y_k \:\sim \:N(m_2, \sigma^2). Параметры m_1,m_2 и \sigma^2неизвестны. Обозначим S^2=\frac{\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{j=1}^k (Y_j - \overline{Y})^2}{n+k-2}. Какое распределение имеет статистика \frac{\overline{X}-\overline{Y}-(m_1-m_2)}{S \cdot \sqrt{\frac{1}{n}+\frac{1}{k}}}?
Рассматриваются две независимые гауссовские выборки  X_1,\ldots,X_n \:\sim \:N(m_1, \sigma^2) и Y_1,\ldots,Y_k \:\sim \:N(m_2, \sigma^2) . Параметры m_1,m_2 неизвестны, \sigma^2- известно. Какое распределение имеет статистика \frac{\overline{X}-\overline{Y}-(m_1-m_2)}{\sigma \cdot \sqrt{\frac{1}{n} + \frac{1}{k}}} ?
Имеются две гауссовские выборки  X_1,\ldots,X_n \:\sim \:N(m_1, \sigma_1^2) и  Y_1,\ldots,Y_k \:\sim \:N(m_2, \sigma_2^2). В каком случае эти выборки будут являться однородными?
Пусть Z=X/\sqrt{Y/2}, где случайная величина X имеет стандартное нормальное распределение N(0,1) , а случайная величина Y имеет распределение хи-квадрат с двумя степенями свободы (\chi^2(2)). Известно, что X и Y независимы. Какое распределение имеет случайная величина Z?
Пусть Z=X/\sqrt{Y}, где случайная величина X имеет стандартное нормальное распределение N(0,1) , а случайная величина Y имеет распределение хи-квадрат с одной степенью свободы (\chi^2(1)). Известно, что X и Y независимы. Какое распределение имеет случайная величина Z?
Пусть Z=X/\sqrt{Y/3}, где случайная величина X имеет стандартное нормальное распределение N(0,1) , а случайная величина Y имеет распределение хи-квадрат с тремя степенями свободы (\chi^2(3)). Известно, что X и Y независимы. Какое распределение имеет случайная величина Z?