База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Чему равно значение выражения C_n^0-C_n^1+...+(-1)^n \cdot C_n^n при n>0?

(Отметьте один правильный вариант ответа.)

Варианты ответа
1
0(Верный ответ)
-1
n
Похожие вопросы
С использованием F_n - чисел Фибоначчи составлена производящая функция g(x)=\sum\limits_{n=0}^{\infty}F_n x^n.Чему равно значение выражения x\cdot g(x)+x^2\cdot g(x)?
С использованием F_n - чисел Фибоначчи составлена производящая функция g(x)=\sum\limits_{n=0}^{\infty}F_n x^n.Чему равно значение выражения x\cdot g(x)+x^2\cdot g(x)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(I) при I \ne N?
Чему равно значение знакопеременного выражения C_n^0 \cdot n^m-C_n^1 \cdot (n-1)^m+C_n^2 \cdot (n-2)^m-...+(-1)^n \cdot C_n^n \cdot (n-n)^m, если m<n?
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(N)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие B_i состоит в том, что в случайной раскраске i-ая по счету клика K_t в графе K_n целиком синяя. Чему равно \sum\limits_{i=1}^{C_n^t}P(B_i)?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие A_i состоит в том, что в случайной раскраске i-ая по счету клика K_s в графе K_n целиком красная. Чему равно \sum\limits_{i=1}^{C_n^s}P(A_i)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?