База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

При каком n выполняется неравенство C_n^s 2^{1-C_s^2}<1?

(Отметьте один правильный вариант ответа.)

Варианты ответа
n \leqslant (1+o(1))\cdot \frac 1 {e\sqrt{2}}\cdot s \cdot 2^{\frac{s}{2}(Верный ответ)
n > (1+o(1))\cdot \frac 1 {e\sqrt{2}}\cdot s \cdot 2^{\frac{s}{2}
n < (1+o(1))\cdot \frac 1 {e\sqrt{2}}\cdot s \cdot 2^{\frac{s}{2}
n \geqslant (1+o(1))\cdot \frac 1 {e\sqrt{2}}\cdot s \cdot 2^{\frac{s}{2}
Похожие вопросы
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_3.
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_2.
Пусть n \geqslant 9.Пусть M_1,... n-элементные подмножества какого-то множества, причем каждый элемент этого множества принадлежит не более чем n множествам M_i, тогда существует одноцветная раскраска данного n-элементного подмножества. Пусть событие A_i состоит в том, что M_i множество одноцветно. Чему равна вероятность A_i?
Пусть n \geqslant 9.Пусть M_1,... n-элементные подмножества какого-то множества, причем каждый элемент этого множества принадлежит не более чем n множествам M_i, тогда существует одноцветная раскраска данного n-элементного подмножества. При применении к данной ситуации локальной леммы Ловаса чему равно d?
При каком минимальном s выполняется неравенство C_n^s 2^{1-C_s^2}<1?
Пусть G(n,p) -случайный граф, множество, состоящее из n вершин, а каждое ребро проводим с вероятностью p, которая независит от вероятности проведения других ребер и может зависеть от n. Пусть случайная величина T_n - число треугольников в случайном графе. Если p=o\left(\frac 1 n\right), то к чему ассимтотические стремится математическое ожидание MT_n?