База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Выберите выражение равное C_n^k.

(Отметьте один правильный вариант ответа.)

Варианты ответа
\frac{n!}{k!}
C_{n-1}^{k-1}+C_{n-1}^k(Верный ответ)
\frac{n!}{(n-k)!}
C_n^{k-n}
Похожие вопросы
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение C_n^k показывает...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Выберите все выражения равные C_n^k.
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_2.
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_3.
При каком k достигается максимальное значение величин C_n^k, если k нечетное число из интервала [0,n]?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i-состоит в том, что i-ый треугольник целиком красный и B_i-состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины A_i орграфа зависимостей в вершины A_j?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?