База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Чему равно C_n^{\left[ an \right]}, где a \in (0,1)?

(Отметьте один правильный вариант ответа.)

Варианты ответа
\left( e^{-a\lna-(1-a)\ln(1-a)}+o(1)\right)^n(Верный ответ)
e^{-a\lna-(1-a)\ln(1-a)}+o(1)
\left( e^{-a\lna+(1-a)\ln(1-a)}+o(1)\right)^n
Похожие вопросы
Чему равна энтропия H(a) для C_n^{\left[ an \right]}, где a \in (0,1)?
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(I) при I \ne N?
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(N)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Укажите все выражения равные C_n^{\left[ an \right]}, где a \in (0,1)?
Пусть G(n,p) -случайный граф, множество, состоящее из n вершин, а каждое ребро проводим с вероятностью p, которая независит от вероятности проведения других ребер и может зависеть от n. Пусть случайная величина T_n - число треугольников в случайном графе. Если p=o\left(\frac 1 n\right), то к чему ассимтотические стремится математическое ожидание MT_n?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие B_i состоит в том, что в случайной раскраске i-ая по счету клика K_t в графе K_n целиком синяя. Чему равно \sum\limits_{i=1}^{C_n^t}P(B_i)?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие A_i состоит в том, что в случайной раскраске i-ая по счету клика K_s в графе K_n целиком красная. Чему равно \sum\limits_{i=1}^{C_n^s}P(A_i)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?