База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Пусть задано частично упорядоченное множество (ЧУМ) (A,\preceq), и для каждого элемента a\in A найдется только конечное число элементов, предшествующих ему. Чему равна функция Мёбиуса \mu(x,y) на ЧУМ A, если x<y?

(Отметьте один правильный вариант ответа.)

Варианты ответа
-$\sum\limits_{z:x\preceq z \prec y} {\mu(x,z)}
$\sum\limits_{z:x\preceq z \prec y} {\mu(x,z)}
-$\sum\limits_{z:x\preceq z \prec y} {\mu(x,z)}(Верный ответ)
$\sum\limits_{z:x\preceq z \prec y} {\mu(x,z)}
Похожие вопросы
Пусть задано частично упорядоченное множество (ЧУМ) (A,\preceq), и для каждого элемента a\in A найдется только конечное число элементов, предшествующих ему. Чему равна функция Мёбиуса \mu(x,y) на ЧУМ A, если x>y?
Пусть задано частично упорядоченное множество (ЧУМ) (A,\preceq), и для каждого элемента a\in A найдется только конечное число элементов, предшествующих ему. Чему равна функция Мёбиуса \mu(x,y) на ЧУМ A, если x=y?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Имеется ранжированное пространство ({\cal X}, {\cal R}), есть некоторое конечное подмножество A из {\cal X} A\subset{\cal X}. и есть число \epsilon \in (0;1). Назовем N\subset{\cal X} \epsilon-сетью для A, если N\cap (r\cap A)\ne \varnothing для любого r \in R...
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(I) при I \ne N?
ПустьA=A_1\cup...\cup A_n. Введем на подмножествах множества индексов N=\{1,...,n\} функцию f(I), где I \subseteq N. Пусть f\left( \{i_1,...i_s\}\right)обозначает число элементов множества A, которые могут не принадлежать каким-то из подмножеств A_{i_1},...,A_{i_s}, но обязаны принадлежать каждому из остальных подмножеств. Чему равноf(N)?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Пусть G(n,p) -случайный граф, множество, состоящее из n вершин, а каждое ребро проводим с вероятностью p, которая независит от вероятности проведения других ребер и может зависеть от n. Пусть случайная величина T_n - число треугольников в случайном графе. Если pn\to \infty, то чему ассимптотически равна величина \frac {DT_n}{(MT_n)^2}?