База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Сколько требуется знать начальных условий, чтобы однозначно определить решение для cоотношения на элементы бесконечной последовательности \{y_n\}^\infty_{n=0}удовлетворяющее условию a_k y_{n+k}+a_{k-1} y_{n+k-1}+...+a_1 y_{n+1}+a_0 y_{n}=0, где постоянные величины a_0,...,a_k \in C?

(Отметьте один правильный вариант ответа.)

Варианты ответа
\infty
n
k(Верный ответ)
0
Похожие вопросы
Как выглядит характеристическое уравнение для cоотношения на элементы бесконечной последовательности \{y_n\}^\infty_{n=0}удовлетворяющее условию a_k y_{n+k}+a_{k-1} y_{n+k-1}+...+a_1 y_{n+1}+a_0 y_{n}=0, где постоянные величины a_0,...,a_k \in C, если k=2?
Сколько решений имеет cоотношение на элементы бесконечной последовательности \{y_n\}^\infty_{n=0}удовлетворяющее условию a_k y_{n+k}+a_{k-1} y_{n+k-1}+...+a_1 y_{n+1}+a_0 y_{n}=0, где постоянные величины a_0,...,a_k \in C?
Выберите какими свойствами cоотношение на элементы бесконечной последовательности \{y_n\}^\infty_{n=0}удовлетворяющее условию a_k y_{n+k}+a_{k-1} y_{n+k-1}+...+a_1 y_{n+1}+a_0 y_{n}=0, где постоянные величины a_0,...,a_k \in C.
Соотношение на элементы бесконечной последовательности \{y_n\}^\infty_{n=0}удовлетворяющее условию a_k y_{n+k}+a_{k-1} y_{n+k-1}+...+a_1 y_{n+1}+a_0 y_{n}=0, где постоянные величины a_0,...,a_k \in C называется...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Пусть A\subset {\cal X},\ |A|=n,\ \epsilon\in (0;1). Из множества A выбираем случайные подмножества N и Tиз m, по схеме выбора с возращением N=\{x_1,...,x_m\}. Пусть определены события E_1=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\} и E_2=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\,\ |r\cap T|\geqslant \frac{\epsilon m}{2}}. Какое m требуется взять, чтобы P(E_1)<1?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_3.