База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Рассмотрим пару ({\cal X}, {\cal R}), где {\cal X} - любое множество, {\cal R} - совокупность подмножеств в {\cal X}. Пусть {\cal X} конечное множество, а любое r\in {\cal R} имеет мощность равную k, что в таком случае представляет собой пара ({\cal X}, {\cal R})?

(Отметьте один правильный вариант ответа.)

Варианты ответа
граф
топологическое пространство
однородный гиперграф(Верный ответ)
ранжированное пространство
Похожие вопросы
Рассмотрим пару ({\cal X}, {\cal R}), где {\cal X} - любое множество, {\cal R} - совокупность подмножеств в {\cal X}. Пусть {\cal X} конечное множество, а любое r\in {\cal R} имеет мощность равную 2, что в таком случае представляет собой пара ({\cal X}, {\cal R})?
Рассмотрим пару ({\cal X}, {\cal R}), где {\cal X} - любое множество, {\cal R} - совокупность подмножеств в {\cal X}. Что представляет собой пара ({\cal X}, {\cal R})?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Имеется ранжированное пространство ({\cal X}, {\cal R}), есть некоторое конечное подмножество A из {\cal X} A\subset{\cal X}. и есть число \epsilon \in (0;1). Назовем N\subset{\cal X} \epsilon-сетью для A, если N\cap (r\cap A)\ne \varnothing для любого r \in R...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_3.
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}.Среди множеств A_2,...,A_k и A_{n-k+2},...,A_{n} выберите множество, с котором не пересекается A_2.
Пусть имеется простой граф G=(V;E),у которого V – множество вершин и E – множество ребер. Подмножество W называется … если для любых x,y принадлежащих W пара \lbrace x,y \rbrace принадлежит E.