База ответов ИНТУИТ

Математические модели механики сплошных сред

<<- Назад к вопросам

Найти величину касательного напряжения на поверхности обтекаемой пластинки в задаче Блазиуса используя интегральное уравнение количества движения и профиль скорости u = \left\{ \begin{array}{l} U\sin (\alpha y);{ при }0 \le \alpha y \le \frac{\pi }{2} \\  U;{ при }\alpha y > \frac{\pi }{2} \\  \end{array} \right. Здесь \alpha  = \alpha (x), U = const

(Отметьте один правильный вариант ответа.)

Варианты ответа
\tau  \approx 0,328\sqrt {\frac{{\rho \mu {U^3}}}{x}}(Верный ответ)
\tau  \approx 0,314\sqrt {\frac{{\rho \mu {U^3}}}{x}}
\tau  \approx 0,356\sqrt {\frac{{\rho \mu {U^3}}}{x}}
Похожие вопросы
Профиль скорости в пограничном слое задан соотношениями u = \left\{ \begin{array}{l} U\sin (\alpha y);{ при }0 \le \alpha y \le \frac{\pi }{2} \\  U;{ при }\alpha y > \frac{\pi }{2} \\  \end{array} \right. Здесь \alpha  = \alpha (x), U = const. Найти толщину вытеснения {\delta _1} (Толщина вытеснения {\delta _1} в пограничном слое определяются формулами: {\delta _1} = \int\limits_0^\infty  {(1 - \frac{u}{U})} dy)
Профиль скорости в пограничном слое задан соотношениями u = \left\{ \begin{array}{l} U\sin (\alpha y);{ при }0 \le \alpha y \le \frac{\pi }{2} \\  U;{ при }\alpha y > \frac{\pi }{2} \\  \end{array} \right. Здесь \alpha  = \alpha (x), U = const. Найти толщину потери импульса \theta (Толщина потери импульса \theta в пограничном слое определяются формулами: \theta  = \int\limits_0^\infty  {u\frac{{1 - u/U}}{U}} dy)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину касательного напряжения \tau на плоскостях при соотношении \frac{{{\mu _0}}}{h} \to 0 (при h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину касательного напряжения \tau на плоскостях при соотношении \frac{{{\mu _0}}}{h} \to a (при h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину касательного напряжения \tau на плоскостях при соотношении \frac{{{\mu _0}}}{h} \to \infty (при h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to a (h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to 0 (h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to \infty (h \to 0, {\mu _0} \to 0)
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.