База ответов ИНТУИТ

Математические модели механики сплошных сред

<<- Назад к вопросам

На поверхность воды падает дождь. Написать соотношения на поверхности \sum, разделяющей дождь и воду, рассматривая дождь как сплошную среду, воду считать несжимаемой жидкостью плотности \rho.Предполагая известными скорость дождя относительно поверхности \sum, а также его среднюю плотность и температуру, найти скорость в воде под поверхностью \sum

(Отметьте один правильный вариант ответа.)

Варианты ответа
{\upsilon _n} = {\upsilon _{n0}}\frac{{{\rho _0}}}{\rho }(Верный ответ)
{\upsilon _n} = -2{\upsilon _{n0}}\frac{{{\rho _0}}}{\rho }
{\upsilon _n} = 2{\upsilon _{n0}}\frac{{{\rho _0}}}{\rho }
Похожие вопросы
На поверхность воды падает дождь. Написать соотношения на поверхности \sum, разделяющей дождь и воду, рассматривая дождь как сплошную среду, воду считать несжимаемой жидкостью плотности \rho.Предполагая известными скорость дождя относительно поверхности \sum, а также его среднюю плотность и температуру, найти давление в воде под поверхностью \sum
На поверхность воды падает дождь. Написать соотношения на поверхности \sum, разделяющей дождь и воду, рассматривая дождь как сплошную среду, воду считать несжимаемой жидкостью плотности \rho.Предполагая известными скорость дождя относительно поверхности \sum, а также его среднюю плотность и температуру, найти температуру в воде под поверхностью \sum
Идеальный совершенный газ, в которомp = \rho RT, u = {c_V} + const, протекает сквозь поверхность разрыва, на которой нет внешних притоков массы, импульса и энергии. Считая потоки тепла {q_{n1}} и {q_{n2}} равными нулю (адиабатичность), а значения p = {p_1}, \rho  = {\rho _1} по одну сторону поверхности разрыва известными, найти {p_2} как функцию {\rho _2}, где индекс 2 относится к величинам по другую сторону поверхности разрыва (\gamma  = \frac{{{c_p}}}{{{c_v}}})
Идеальный совершенный газ, в которомp = \rho RT, u = {c_V} + const, протекает сквозь поверхность разрыва, на которой нет внешних притоков массы, импульса и энергии. Считая потоки тепла {q_{n1}} и {q_{n2}} равными нулю (адиабатичность), а значения p = {p_1}, \rho  = {\rho _1} по одну сторону поверхности разрыва известными, найти изменение энтропии {s_2} - {s_1} как функцию {\rho _2}
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
В задаче о распаде произвольного разрыва в газе, при t=0 характеристики течения u,p,V кусочно-постоянны и в области 1 (x \ge 0) равны {u_{01}},{p_{01}},{V_{01}}, а в области 2 (x \le 0) — {u_{02}},{p_{02}},{V_{02}}. Значения \gamma в областях 1 и 2 одинаковы. Будет ли движение газа при t>0 автомодельным?
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to 0 (h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to a (h \to 0, {\mu _0} \to 0)