База ответов ИНТУИТ

Математические модели механики сплошных сред

<<- Назад к вопросам

Найти стационарное движение вязкой несжимаемой жидкости в длинной горизонтальной цилиндрической трубе под действием заданного постоянного продольного перепада давления {i_0} =  - \partial p/\partial x, если сечением трубы является круг радиуса a

(Отметьте один правильный вариант ответа.)

Варианты ответа
{\upsilon _z} = \frac{{{i_0}{a^2}}}{{2\mu }}(1 + \frac{{{r^2}}}{{{a^2}}})
{\upsilon _z} = \frac{{{i_0}{a^2}}}{{4\mu }}(1 + \frac{{{r^2}}}{{{a^2}}})
{\upsilon _z} = \frac{{{i_0}{a^2}}}{{4\mu }}(1 - \frac{{{r^2}}}{{{a^2}}})(Верный ответ)
Похожие вопросы
Найти стационарное движение вязкой несжимаемой жидкости в длинной горизонтальной цилиндрической трубе под действием заданного постоянного продольного перепада давления {i_0} =  - \partial p/\partial x, если сечением трубы является круговое кольцо, a и b — внутренний и внешний радиусы
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Одномерное адиабатическое движение идеального совершенного газа описывается системой уравнений \left\{ \begin{array}{l} \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \rho \upsilon }}{{\partial x}} = 0 \\  \frac{{\partial \upsilon }}{{\partial t}} + \upsilon \frac{{\partial \upsilon }}{{\partial x}} =  - \frac{1}{\rho }\frac{{\partial \rho }}{{\partial x}} \\  \frac{\partial }{{\partial t}}(\frac{p}{{{\rho ^\gamma }}}) + \upsilon \frac{\partial }{{\partial x}}(\frac{p}{{{\rho ^\gamma }}}) = 0 \\  \end{array} \right, где \gamma - постоянная; x — декартова координата; \rho — плотность; p — давление; \upsilon  = {\upsilon _x}, {\upsilon _y} = {\upsilon _z} = 0 — компоненты скорости. Пусть плоскость x = X(t) есть поверхность слабого разрыва параметров \rho, p и \upsilon. Выразить скорость D = dX/dt движения поверхности слабого разрыва через значения \rho, p, \upsilon на ней.
Бесконечный слой вязкой жидкости толщины h ограничен свободной поверхностью, а снизу — неподвижной плоскостью, наклоненной под углом \alpha к горизонту. Под действием силы тяжести в слое происходит стационарное течение. Используя данную модель, найти значение максимальной скорости в слое при течении воды (\nu  = 0,01{см^2}/с) в канале, длина которого l = 100{ м}, перепад высот начала и конца над горизонтальной плоскостью H = 1{ см}, глубина h = 0,5{ см}
Бесконечный слой вязкой жидкости толщины h ограничен свободной поверхностью, а снизу — неподвижной плоскостью, наклоненной под углом \alpha к горизонту. Под действием силы тяжести в слое происходит стационарное течение. Используя данную модель, найти значение средней по сечению скорости в слое при течении воды (\nu  = 0,01{см^2}/с) в канале, длина которого l = 100{ м}, перепад высот начала и конца над горизонтальной плоскостью H = 1{ см}, глубина h = 0,5{ см}
Слой вязкой жидкости ограничен двумя горизонтальными бесконечными параллельными пластинами A и B, расстояние H между которыми фиксировано. Найти напряжение сил трения {\tau _A} на пластинах, если обе пластины покоятся, а движение жидкости вызывается заданным градиентом давления вдоль пластин
Слой вязкой жидкости ограничен двумя горизонтальными бесконечными параллельными пластинами A и B, расстояние H между которыми фиксировано. Найти составляющую скорости {\upsilon _x} слоя, если обе пластины покоятся, а движение жидкости вызывается заданным градиентом давления вдоль пластин
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to a (h \to 0, {\mu _0} \to 0)
Рассмотреть стационарное течение вязкой жидкости между двумя параллельными плоскостями, движущимися в противоположных направлениях со скоростью {\upsilon _0}. Расстояние между плоскостями равно 2H. Коэффициент вязкости: \mu  = \left\{ \begin{array}{l} {\mu _1};{\rm{ при }}y \ge h \\  {\mu _0};{\rm{ при }} - h < y < h \\  {\mu _2};{\rm{ при }}y \le  - h \\  \end{array} \right, причем h \ll H, {\mu _0} \ll {\mu _1}, {\mu _0} \ll {\mu _2}. Найти величину скачка скорости \upsilon при y = 0 при соотношении \frac{{{\mu _0}}}{h} \to 0 (h \to 0, {\mu _0} \to 0)