База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

Какое выражение является многочленом Тейлора Q_n(x) для n раз дифференцируемой в окрестности точки x = 0 функции y = f(x)

(Отметьте один правильный вариант ответа.)

Варианты ответа
f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2 + \cdot \cdot \cdot + f^{(n)}(x_0)(x - x_0)^{n}
f(x_0) + \frac {f'(x_0)} {1!}(x - x_0) + \frac {f''(x_0)} {2!}(x - x_0)^2 + \cdot \cdot \cdot + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^{n}(Верный ответ)
f(x_0) + \frac {f'(x_0)} {1!}(x + x_0) + \frac {f''(x_0)} {2!}(x + x_0)^2 + \cdot \cdot \cdot + \frac{f^{(n)}(x_0)}{n!}(x + x_0)^{n}
f(x_0) + \frac {f'(x_0)} {1}(x - x_0) + \frac {f''(x_0)} {2}(x - x_0)^2 + \cdot \cdot \cdot + \frac{f^{(n)}(x_0)}{n}(x - x_0)^{n}
Похожие вопросы
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда M_0(x_0,f(x_0)) является точкой перегиба графика функции, если
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - не является точкой минимума и максимума f(x), если
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка, непрерывная в x_0 и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - точка максимума f(x), если
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x-1}$, $x=0$, $\Delta x=0.1$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x-1}$, $x=0$, $\Delta x=0.3$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой:$f(x)=\frac 1 {x+2}$, $x=0$, $\Delta x=0.1$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x-1}$, $x=0$, $\Delta x=-0.3$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x+2}$, $x=0$, $\Delta x=-0.1$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x+2}$, $x=0$, $\Delta x=-0.2$
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x-1}$, $x=0$, $\Delta x=-0.2$