База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

Если в точке x существует производная f'(x), то

(Отметьте один правильный вариант ответа.)

Варианты ответа
производная в этой точке не равнаf'(x+0)илиf'(x-0)
производная в этой точке равнаf'(x-0) (Верный ответ)
не существуетf'(x+0)
Похожие вопросы
Если в точке x существует производная f'(x), то
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет минимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет экстремум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет максимум, если её производная f'(x) при переходе через точку x_0
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка, непрерывная в x_0 и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - точка максимума f(x), если
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=x если |x|\le 1 и f(x)=1, если |x|> 1
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - не является точкой минимума и максимума f(x), если
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда M_0(x_0,f(x_0)) является точкой перегиба графика функции, если
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - точка минимуа f(x), если
Если f'(x+0) = f'(x-0), то в точке x производная f'(x)