База ответов ИНТУИТ

Математический анализ - 2

<<- Назад к вопросам

Функция f - интегрируема по Риману на [a,b]. Тогда предел интегральных сумм этой функции

(Отметьте один правильный вариант ответа.)

Варианты ответа
равен нулю
может равняться бесконечности
может не существовать
существует и конечен(Верный ответ)
Похожие вопросы
Число J называется пределом интегральных сумм S_n функции f на [a,b], если \forall\varepsilon>0\quad\exists\delta>0: для любого разбиения [a,b]:\Delta x_k<\delta
Функция f - интегрируема по Риману на [a,b]. Тогда функция f на [a,b] всегда
Число J называется пределом интегральных сумм S_n функции f на [a,b], если \forall\varepsilon>0\quad\exists\delta>0:\quad\left|S_n-J\right|<\varepsilon
Число J не является пределом интегральных сумм S_n функции f на [a,b], если
Пусть функция f интегрируема на отрезке [a,c], но не интегрируема на отрезке [c,b]. Тогда она на отрезке [a,b]
Пусть функция f интегрируема на отрезке [a,c] и интегрируема на отрезке [c,b]. Тогда она на отрезке [a,b]
Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x-1 на отрезке [1,6], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^3 на отрезке [-2,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.