База ответов ИНТУИТ

Математический анализ - 2

<<- Назад к вопросам

Площадь криволинейной трапеции для непрерывной и неотрицательной функции f(x) на [a,b] равна

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
\left|\int\limits_a^b f(x)dx\right|(Верный ответ)
-\int\limits_a^b f(x)dx
\int\limits_a^b f(x)dx(Верный ответ)
Похожие вопросы
Площадь криволинейной трапеции для непрерывной и знакопеременной функции f(x) на [a,b]: f(c)=0,\quad f(x)>0 для x\in[a,c) и f(x)<0 для x\in(c,b] равна
Площадь криволинейной трапеции для непрерывной и отрицательной функции f(x) на [a,b] равна
Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [-1,1], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^3 на отрезке [-2,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x-1 на отрезке [1,6], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=(x-1)^2 на отрезке [1,4], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x+1 на отрезке [-1,4], значения \xi_i, i=0,\dots,n-1 выбираются в серединах промежутков [x_i,x_{i+1}].

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [-1,1], значения \xi_i, i=0,\dots,n-1 выбираются в серединах промежутков [x_i,x_{i+1}].