База ответов ИНТУИТ

Математический анализ - 2

<<- Назад к вопросам

При вычислении длины кривой в полярных координатах функция \rho=f(\varphi) на отрезке [\alpha,\beta] должна удовлетворять условиям:

(Отметьте один правильный вариант ответа.)

Варианты ответа
дифференцируемость
непрерывная дифференцируемость(Верный ответ)
непрерывность
Похожие вопросы
При вычислении длины кривой в прямоугольных координатах функция y=f(x) на отрезке [a,b] должна удовлетворять условиям:
При вычислении длины кривой, заданной параметрически, функции x=\varphi(t),\; y=\psi(t) на отрезке [t_0,T] должны удовлетворять условиям:
Длина S кривой \rho=f(\varphi) в полярных координатах вычисляется по формуле
Пусть площадь криволинейной трапеции, заданной параметрически x=\varphi(t),y=\psi(t), вычисляется по формуле \int\limits_\alpha^\beta \psi(t)\varphi'(t)dt. Тогда на отрезке \alpha,\beta должны выполняться условия:
Пусть площадь криволинейной трапеции, заданной параметрически x=\varphi(t),y=\psi(t), вычисляется по формуле \int\limits_\alpha^\beta \psi(t)\varphi'(t)dt. Тогда на отрезке \alpha,\beta должны выполняться условия:
Длина кривой в полярных координатах вычисляется по формуле \int\limits_\alpha^\beta\sqrt{\rho'^2+\rho^2}d\varphi. Отметьте верные утверждения:
Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=(x-1)^2 на отрезке [1,4], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^2 на отрезке [0,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.

Найти интегральную сумму S_n для функции f(x) на заданном отрезке [a,b], разбивая его на n равных промежутков точками x_i, i=0,\dots,n, a=x_0<x_1<\dots<x_n=b и выбирая значения x_i\le\xi_i\le x_{i+1}, i=0,\dots,n-1 указанным способом.

f(x)=x^3 на отрезке [-2,3], значения \xi_i, i=0,\dots,n-1 выбираются равными x_{i+1}.