База ответов ИНТУИТ

Программирование

<<- Назад к вопросам

Функция arcsin(x) представляется рядом Тейлора:
    arcsin(x) = x +(1/2)x3/3 + (1/2)(3/4)x5/5 + (1/2)(3/4)(5/6)x7/7 + ...
Этот ряд сходится лишь для значений x, по модулю меньшихединицы, причем вблизи единицы сходится очень медленно и точность его вычисления низка. Поэтому эффективно вычислять сумму ряда можно лишь для x, по модулюсущественно меньших единицы - например, |x|<0.75. Каким свойством функции arcsin можно воспользоваться,чтобы свести ее вычисление к суммированию ряда для значеийx в интервале |x|<0.75? Укажите всевозможные правильные решения из числа перечисленных ниже.(Предполагается, что мы умеем быстро и точно вычислять квадратный кореньsqrt(z), а также знаем константу pi.)

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
При x = ±1 значение arcsin(x) = ±pi/2. При других значениях x воспользоваться формулой
    arcsin(x) = arсtg(x / sqrt(1 - x*x))
и для y=x/sqrt(1-x*x) вычислить сумму ряда Тейлора функции arctg:
    arctg(y) = y - y3/3 + y5/5 - y7/7 + ...
Свести вычисление функции arcsin к вычислению функции arctg, воспользовавшись формулой
    arcsin(x) = 2*arсtg( x / (1 + sqrt(1 - x*x)) ).
(Верный ответ)
Воспользоваться нечетностью функции arcsin, сводящей ее вычисление к положительным значениям x. Для положительных значений x0.7 вычислить сумму указанного ряда. Для положительных значений x>0.7 воспользоваться формулой
    arcsin(x) = pi/2 - arcsin(sqrt(1 - x*x))
которая сводит задачу к вычислению ряда для значения y=sqrt(1-x*x).
(Верный ответ)
Похожие вопросы
Функция arctg(x) (ее также обозначают arctan или atan)представляется рядом Тейлора:
    arctg(x) = x - x3/3 + x5/5 - x7/7 + ...
Этот ряд сходится лишь для значений x, по модулю не превосходящихединицы, а эффективно вычислять его можно лишь для x, по модулюсущественно меньших единицы - например, |x|<0.5.(Для значений x, по модулю близких к единице и не превосходящихединицу, ряд сходится, но очень медленно, а точность вычисления его суммыневысока.)Какие способы вычисления функции arctan(x) для "плохих"значений x возможны? Укажите все разумные способы изчисла перечисленных ниже.(Предполагается, что мы умеем быстро и точно вычислять квадратный кореньsqrt(z), а также знаем константу pi.)
Функция arctg(x) (ее также обозначают arctg или atan)представляется рядом Тейлора:
    arctg(x) = x - x3/3 + x5/5 - x7/7 + ...
Этот ряд сходится лишь для значений x, по модулю не превосходящихединицы, а эффективно вычислять его можно лишь для x, по модулюсущественно меньших единицы - например, |x|<0.5.Чтобы свести задачу вычисления функции arctg(x) ксуммированию ряда для малых значений x,можно воспользоваться формулой
    arctg(x) = 2*arctg(y), где y = x/(1 + sqrt(1 + x*x)),
заменив вычисление ряда для x вычислением для y.Например, arctg(1)=2*arctg(1/(1+sqrt(2))). При этом нам придетсявоспользоваться функцией sqrt, вычисляющей квадратный корень. Какоемаксимальное число раз ее придется вызвать, чтобы свести вычисление arctg(x) для произвольного x к суммированию ряда для x в интервале |x|<0.5?
Формула Бинома Ньютона дает следующее разложение в ряддля функции "квадратный корень из z":
(1+x)0.5 = sqrt(1+x) =    1 + 0.5 x + 0.5(-0.5)/2! x2 + 0.5(-0.5)(-1.5)/3! x3 + 0.5(-0.5)(-1.5)(-2.5)/4! x4 + ...
(мы обозначили z=1+x). Этот ряд сходится лишь для значений x, по абсолютной величине не превосходящих 1, а эффективно вычислятьего сумму можно только для еще более узкого интервала значений x. Каким свойством функции sqrt(z)удобнее всего воспользоваться, чтобы свести ее вычисление к суммированию ряда?
Функция ln(z) (натуральный логарифм z) представляетсяв виде степенного ряда следующим образом:
    ln(1+x) = x - x2/2 + x3/3 - x4/4 + ...
(мы обозначили z=1+x). Этот ряд сходится лишь для значений x, по абсолютной величине не превосходящих 1, а эффективно вычислятьего сумму можно только для еще более узкого интервала значений x. Какими свойствами функции ln(z)удобнее всего воспользоваться, чтобы свести ее вычисление к суммированию ряда?
Формула Бинома Ньютона дает следующее разложение в ряддля функции "кубический корень из z" (обозначим ее croot(z)):
(1+x)1/3 = croot(1+x) =    1 + (1/3)x + (1/3)(-2/3)/2! x2 + (1/3)(-2/3)(-5/3)/3! x3 + (1/3)(-2/3)(-5/3)(-8/3)/4! x4 + ...
(мы сделали замену z=1+x). Этот ряд сходится лишь для значений x, по абсолютной величине не превосходящих 1, а эффективно вычислятьего сумму можно только для еще более узкого интервала значений x. Каким свойством функции croot(z)=z1/3удобнее всего воспользоваться, чтобы свести ее вычисление для положительных значений z к суммированию ряда?
Пусть w - последовательностьцелых чисел, F(W) - максимальная изсумм нескольких подряд идущих элементовпоследовательности w.Например, для последовательностиw={1, -2, 3, 4, -1, 5, -2, -3, 4}максимальную сумму образуют элементы с третьего по шестой:F(w)=3+4-1+5=11.Какие из перечисленных ниже функцийявляются индуктивным расширением функции F?Укажите все правильные варианты.
Назовем функцию y = f(p) на последовательности p элементов некоторого типа индуктивной, если при добавлении в конецпоследовательности pеще одного элемента x новое значение функцииy1 = f(p&x) можно вычислить, зная толькостарое значение y и добавленный элемент x.Среди перечисленных ниже функций на последовательностях вещественныхчисел укажите индуктивные.
Назовем функцию y = f(p) на последовательности p элементов некоторого типа индуктивной, если при добавлении в конецпоследовательности pеще одного элемента x новое значение функцииy1 = f(p&x) можно вычислить, зная толькостарое значение y и добавленный элемент x.Среди перечисленных ниже функций на последовательностях вещественныхчисел укажите индуктивные.
Назовем функцию y = f(p) на последовательности p элементов некоторого типа индуктивной, если при добавлении в конецпоследовательности pеще одного элемента x новое значение функцииy1 = f(p&x) можно вычислить, зная толькостарое значение y и добавленный элемент x.Среди перечисленных ниже функций на последовательностях вещественныхчисел укажите индуктивные.
Пусть функцияf(x) = p*x2 + q*x + r(многочлен степени 2) задана на отрезке [a, b].Пусть отрезок [a, b] разделен на 4 равных части;обозначим концы этих отрезков черезx0, x1,x2, x3, x4:
    h = (b-a)/4, xi = a+i*h, i = 0,1,2,3,4.
Обозначим
    yi = f(xi).
Чему равен интеграл функции f(x)по отрезку [a, b]? Отметьте все правильные ответы.