База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Известно, что если направление градиента является направлением наискорейшего возрастания функции, то противоположное направление является направлением наискорейшего убывания функции. Это свойство присуще:

(Отметьте один правильный вариант ответа.)

Варианты ответа
методу наискорейшего спуска(Верный ответ)
методу дихотомии
двойственному симплекс – методу
Похожие вопросы
Одно из свойств метода наискорейшего спуска гласит о том, что если направление градиента является направлением наискорейшего возрастания функции, то противоположное направление:
Если направление, противоположное направлению градиента, характеризуется наискорейшим убыванием функции, то направление градиента:
Направление градиента является направлением?
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Метод, при котором происходит движение к минимуму в направлении наиболее быстрого убывания функции, определяемого антиградиентом, носит название:
Если некоторая точка x0 функции является стационарной, а сама функция в окрестности точки x0 является строго выпуклой, то в точке x0:
Согласно какому методу после вычисления в начальной точке градиента функции делают в направлении антиградиента не маленький шаг, а движутся до тех пор, пока функция убывает?
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 - значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, то: