База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Допустимый вектор x0 оптимальный тогда и только тогда, когда в двойственной задаче имеется такое допустимое решение y0, что:

(Отметьте один правильный вариант ответа.)

Варианты ответа
cTx0=bTy0(Верный ответ)
cTx0>bTy0
cTx0=-bTy0
Похожие вопросы
Если в двойственной задаче имеется такое допустимое решение y0, чтоcTx0=bTy0, то допустимый вектор x0:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Вектор x* решением задачи нелинейного программирования: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m тогда и только тогда, когда существует такой вектор Δ* ≥ 0, для которого выполняются условия:
n–мерный вектор x, для которого xi=xi0 при i є Iδ, и xj=0 при i ∉ Iδ является псевдопланом тогда и только тогда, когда:
Если в двойственной задаче допустимый вектор x0 является оптимальным и при этом выполняется условие cTx0=bTy0, то:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть в некоторой задаче минимизации функции f(x), где x є R и R – непустое выпуклое множество в Е(n), точка x' является одновременно точкой и локального, и глобального минимумов. Тогда функция f(x):
Пусть задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Известно, что существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Функции gi(x) удовлетворяют условию регулярности Слейтера. Тогда:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Пусть x' – точка локального минимума рассматриваемой задачи. Тогда x' является:
Пусть n – мерный вектор x является псевдопланом, для которого выполняются условия: Δj ≥ 0, j=1,...,n;. Тогда справедливы равенства: