База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Если для всех точек x, лежащих в малой окрестности точки [x^0_1, x^0_2 ,\ldots, x^0_n ] имеет место неравенство f(x^0_1, x^0_2 ,\ldots, x^0_n) \ge; f(x_1, x_2, \ldots, x_n), то:

(Отметьте один правильный вариант ответа.)

Варианты ответа
функция достигает локального минимума в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n)
функция не имеет экстремумов в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n)
функция достигает локального максимума в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n)(Верный ответ)
Похожие вопросы
Функция f(x) достигает локального максимума в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n), если для всех точек x, лежащих в малой окрестности точки [x^0_1, x^0_2 ,\ldots, x^0_n ] имеет место неравенство:
Функция f(x) достигает локального максимума в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n) и при этом имеет место равенство f(x^0_1, x^0_2 ,\ldots, x^0_n) \ge; f(x_1, x_2, \ldots, x_n). Это справедливо:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Пусть задача сформулирована в виде:максимизировать \sum c_i x_i, \; i=1,\ldots,n при условиях
\begin{aligned}& a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\& a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\& a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n, \; x_1 \ge 0, x_2 \ge 0, \ldots, x_n \ge 0 .\end{aligned}
Данная форма записи является:
Если задача сформулирована в виде: максимизировать \sum с_i x_i, \; i=1,\ldots,n при условиях
\begin{aligned}& a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1 \\& a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2 \\& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\& a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_n, \; x_1 \ge 0, x_2 \ge 0, \ldots, x_n \ge 0 .\end{aligned}
то это задача:
Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Предположим, что это решение допустимо, т.е. x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0. Если Аr не входит в базис, то:
Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m, которое является допустимым, т.е. x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0. При этом справедливо равенство: A1x1r+A2x2r+...+Amxmr = Ar. Это значит, что:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Новое решение x'_1, x'_2, \ldots, x'_m, x'_r связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r Тогда уравнение имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m.Новое решение x'_1, x'_2, \ldots, x'_m, x'_r базисное решение связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Данное решение будет допустимым, если: