База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

При помощи какого из нижеприведенных соотношений осуществляется нахождение экстремума функции F(x) методом Ньютона:

(Отметьте один правильный вариант ответа.)

Варианты ответа
x_{i+1} = x_i - \frac{F'(x_i)}{F''(x_i)}(Верный ответ)
x_{i+1} = x_i + \frac{F'(x_i)}{F''(x_i)}
x_{i+1} = x_i + \frac{F''(x_i)}{F'(x_i)}
Похожие вопросы
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Для нахождения экстремума функции F(x) методом Ньютона начальные приближения x выбирают в такой точке интервала [a; b], где знаки функции f(x) и ее кривизны f''(x):
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Согласно метода Ньютона, начальные приближения x выбирают в такой точке интервала [a; b], где знаки функции f(x) и ее кривизны f''(x) совпадают, т.е. выполняется условие:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Пусть функция F(x) вогнута (выпукла), что соответствует монотонности ее первой производной. Если в точке экстремума x' функция F(x) имеет минимум, то производная F'(x) в окрестности x' меняет знак с отрицательного на положительный, т.е. F'(x) является возрастающей функцией, значит:
Дана функция F(x). Известно, что x' доставляет некоторый экстремум функции F(x) на интервале [a; b] с заданной точностью ξ. При этом F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, т.е. b = x, то:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 - значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, то:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Согласно метода Ньютона, начальные приближения x выбирают в такой точке интервала [a; b], где выполняется условие f(x)·f''(x) > 0, т.е. наблюдается совпадение знаков: