База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть имеется начальный интервал (a; b), который имеет длину L = b – a. Согласно метода Фибоначчи:

(Отметьте один правильный вариант ответа.)

Варианты ответа
Ln = L1/Fn + ξ(Fn–2/Fn)(Верный ответ)
Ln = ξ(Fn–2/Fn) - L1/Fn
Ln = L1/Fn - ξ(Fn–2/Fn)
Похожие вопросы
Пусть имеется начальный интервал (a; b), который имеет длину L = b – a. Согласно метода Фибоначчи интервал неопределенности имеет длину Ln = L1/Fn + ξ(Fn–2/Fn). Это значит, что:
Пусть имеется начальный интервал (a; b). Согласно метода Фибоначчи интервал неопределенности имеет длину Ln = L1/Fn + ξ(Fn–2/Fn). Это справедливо, если:
Предположим, что имеется интервал неопределенности (x1; x3) и известно значение f(x2) внутри этого интервала. Положим x2–x1 = L и x3–x2 = R. Если x4 находится в интервале (x1; x2) и новым интервалом неопределенности будет (x1; x2) длиной x2–x1 = L, то в этом случае:
Предположим, что имеется интервал неопределенности (x1; x3) и известно значение f(x2) внутри этого интервала. Положим x2–x1 = L и x3–x2 = R, L > R. Если x4 находится в интервале (x1; x2) и новым интервалом неопределенности будет (x1; x2) длиной x2–x1 = L, то:
Предположим, что имеется интервал неопределенности (x1; x3) и известно значение f(x2) внутри этого интервала. Положим x2–x1=L и x3–x2=R, причем L > R. Если x4 находится в интервале (x1; x2) и f(x4) < f(x2), то новым интервалом неопределенности будет:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Согласно метода Ньютона, начальные приближения x выбирают в такой точке интервала [a; b], где знаки функции f(x) и ее кривизны f''(x) совпадают, т.е. выполняется условие:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Согласно метода Ньютона, начальные приближения x выбирают в такой точке интервала [a; b], где выполняется условие f(x)·f''(x) > 0, т.е. наблюдается совпадение знаков:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Пусть x' – точка локального минимума рассматриваемой задачи. Тогда x' является: