База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. При этом Ar не входит в базис, т.е. справедливо равенство: A1x1r+A2x2r+...+Amxmr = Ar. Тогда базисное решение имеет вид:

(Отметьте один правильный вариант ответа.)

Варианты ответа
x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0(Верный ответ)
x^*_1 = 0, x^*_2 = 0, \ldots, x^*_m = 0
x^*_1 > 0, x^*_2 > 0, \ldots, x^*_m > 0
Похожие вопросы
Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m, которое является допустимым, т.е. x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0. При этом справедливо равенство: A1x1r+A2x2r+...+Amxmr = Ar. Это значит, что:
Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Предположим, что это решение допустимо, т.е. x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0. Если Аr не входит в базис, то:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Новое решение x'_1, x'_2, \ldots, x'_m, x'_r связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r Тогда уравнение имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m.Новое решение x'_1, x'_2, \ldots, x'_m, x'_r базисное решение связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Данное решение будет допустимым, если:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m согласно симплекс – методу, если ограничения задачи линейного программирования имеют вид:
Пусть новое решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 имеет вид x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r, и при этом является допустимым. Выведем одну переменную xi из базисного решения, а соответствующий вектор из базиса. Тогда новое базисное решение имеет вид:
Согласно симплекс – метода, верное базисное решение x^*_1, x^*_2, \ldots, x^*_m при ограничениях задачи линейного программирования A1x1+A2x2+...+Anxn+An+1xn+1+...+An+mxn+m=A0 имеет вид:
Новое базисное решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 имеет вид x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. При этом имеет место соотношение: x_{r \max} = \min \{ x^*_i / x_{ir} \}. Тогда новое решение: