База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть в некоторой точке x0 достигается внутренний относительный минимум, и сама функция при этом в окрестности точки x0 строго выпукла. Тогда точка x0:

(Отметьте один правильный вариант ответа.)

Варианты ответа
является граничной точкой
не является стационарной
является стационарной(Верный ответ)
Похожие вопросы
Для того, чтобы в точке x0 достигался внутренний относительный минимум, достаточно, чтобы эта точка была стационарной, а сама функция в окрестности точки x0 была:
Пусть функция F(x) вогнута (выпукла), что соответствует монотонности ее первой производной. Если в точке экстремума x' функция F(x) имеет минимум, то производная F'(x) в окрестности x' меняет знак с отрицательного на положительный, т.е. F'(x) является возрастающей функцией, значит:
Пусть функция вогнута (выпукла), т.е. ее первая производная монотонна. Если в точке x' функция F(x) имеет минимум, и F'(x) является возрастающей функцией, то F'(x) в окрестности x':
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Если некоторая точка x0 функции является стационарной, а сама функция в окрестности точки x0 является строго выпуклой, то в точке x0:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 - значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, то:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи. Если ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,n в точке x* равен m, то существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Пусть x' – точка локального минимума рассматриваемой задачи. Тогда x' является:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Известно, что производная F'(x) в окрестности x' меняет знак с положительного на отрицательный, т.е. F'(x) является убывающей функцией, и F''(x) < 0. Следовательно, в точке x' функция F(x):
Пусть функция F(x) вогнута (выпукла), т.е. ее первая производная монотонна. Известно, что производная F'(x) в окрестности x' меняет знак с отрицательного на положительный, т.е. F'(x) является возрастающей функцией, и F''(x) > 0. Следовательно, в точке x' функция F(x):