База ответов ИНТУИТ

Введение в теорию вероятностей

<<- Назад к вопросам

Укажите распределение разности двух независимых случайных величин с одним и тем же нормальным распределением с параметрами a = 1, \sigma^2 = 1.

(Отметьте один правильный вариант ответа.)

Варианты ответа
N_{0, 1}
I_0
N_{0, 2}
(Верный ответ)
N_{0, 0}
Похожие вопросы
Укажите значение в точке x = 3 плотности распределения суммы трех независимых в совокупности случайных величин с одним и тем же нормальным распределением с параметрами a = 1, \sigma^2 = 1.
Дана последовательность независимых и одинаково распределенных случайных величин с нормальным распределением с параметрами a = 2, \sigma^2 = 1. Пусть S_n - сумма первых n случайных величин в этой последовательности. Последовательность S_n/n слабо сходится к некоторому распределению. Найдите это распределение.
Пусть \xi_1, \xi_2, \ldots — последовательность независимых случайных величин с одним и тем же нормальным распределением с параметрами a = 1\text{ и }\sigma^2 = 4. Укажите, чему равен предел при n \to \infty последовательности
\frac{\xi_1+\ldots+\xi_n}n
в смысле сходимости по вероятности.
Пусть \xi_1, \xi_2, \ldots — последовательность независимых случайных величин с одним и тем же нормальным распределением с параметрами a = 1\text{ и }\sigma^2 = 4. Укажите, чему равен предел при n \to \infty последовательности
\frac{\xi_1^2+\ldots+\xi_n^2}n
в смысле сходимости почти наверное.
Дана последовательность независимых и одинаково распределенных случайных величин с биномиальным распределением с параметрами m = 4, p = 1/2. Пусть S_n - сумма первых n случайных величин в этой последовательности. Последовательность S_n/n слабо сходится к некоторому распределению. Найдите это распределение.
Дана последовательность независимых и одинаково распределенных случайных величин с биномиальным распределением с параметрами m = 8, p = 1/2. Пусть S_n - сумма первых n случайных величин в этой последовательности. Последовательность \frac{S_n-4n}{\sqrt{n}} слабо сходится к некоторому распределению. Найдите это распределение.
Пусть \xi_1, \xi_2, \ldots — последовательность независимых случайных величин с одним и тем же биномиальным распределением с параметрами m = 3\text{ и }p = 1/4. Укажите, чему равен предел при n \to \infty последовательности
\frac{\xi_1+\ldots+\xi_n}n
в смысле сходимости по вероятности.
Дана последовательность независимых и одинаково распределенных случайных величин с распределением Пуассона с параметром \lambda = 2, S_n - сумма первых n случайных величин в этой последовательности. Последовательность S_n/n слабо сходится к некоторому распределению. Найдите это распределение.
Дана последовательность независимых и одинаково распределенных случайных величин с равномерным распределением на отрезке [-1, 1], S_n - сумма первых n случайных величин в этой последовательности. Последовательность \frac{S_n}{\sqrt{n}} слабо сходится к некоторому распределению. Найдите это распределение.
Дана последовательность независимых и одинаково распределенных случайных величин с распределением Пуассона с параметром \lambda = 2, S_n - сумма первых n случайных величин в этой последовательности. Последовательность \frac{S_n-2n}{\sqrt{n}} слабо сходится к некоторому распределению. Найдите это распределение.