База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение F(n,r) показывает...

(Отметьте один правильный вариант ответа.)

Варианты ответа
число способов зафиксировать цикл
число способов зафиксировать вершины для цикла
число способов построить цикл на выбранных вершинах
число различных (как графы с занумерованными вершинами) лесов с r деревьями с общим количеством вершин n, такое, что первое дерево содержит вершину 1, второе – вершину 2, …, r-ое дерево содержит вершину r(Верный ответ)
Похожие вопросы
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение C_n^k показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение C_n^k\cdot\frac{(r-1)!} {2} показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение \frac{(r-1)!} {2} показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot r \cdot n^{n-1-r} выражение r \cdot n^{n-1-r} показывает...
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right).При указанном интервале суммирования для S_2, что является нижней оценкой величины \frac{r(r-1)}{2n}?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_1?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_2?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right).Выберите операции и свойства, которые использовались для нахождения асимптотической оценки S_2
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right).Выберите операции и свойства, которые использовались для нахождения асимптотической оценки S_2
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?