База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

A_1,...,A_n- события. Пусть G(V,E) произвольный орграф зависимостей. И существуют x_1,...,x_n \in [0,1), что выполняется P\left(\bigcap_{i=1}^n \overline{A_i}\right)\leqslant \prod\limits_{j=1}^n (1-x_j). Что верно относительно P(A_i)?

(Отметьте один правильный вариант ответа.)

Варианты ответа
P(A_i)\geqslant x_j \cdot \prod\limits_{j:(A_i,A_j) \in E} (1-x_j)
P(A_i)\leqslant x_j \cdot \prod\limits_{j:(A_i,A_j) \in E} (1-x_j)(Верный ответ)
P(A_i)\geqslant x_j \cdot \sum\limits_{j:(A_i,A_j) \in E} (1-x_j)
P(A_i)\leqslant x_j \cdot \sum\limits_{j:(A_i,A_j) \in E} (1-x_j)
Похожие вопросы
A_1,...,A_n - события. Пусть G(V,E) произвольный орграф зависимостей и существуют x_1,...,x_n \in [0,1) такие, что для любого i выполнено P(A_i)\leqslant x_j \cdot \prod\limits_{j:(A_i,A_j) \in E} (1-x_j). Тогда ...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i-состоит в том, что i-ый треугольник целиком красный и B_i-состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины A_i орграфа зависимостей в вершины A_j?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i-состоит в том, что i-ый треугольник целиком красный и B_i-состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины B_i орграфа зависимостей в вершины B_j?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i состоит в том, что i-ый треугольник целиком красный и B_i состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины A_i орграфа зависимостей в вершины B_i?
Пусть A\subset {\cal X},\ |A|=n,\ \epsilon\in (0;1). Из множества A выбираем случайные подмножества N и Tиз m, где m=\left[\frac{8d}{\epsilon} log_2 \frac{8d}{\epsilon} \right] по схеме выбора с возращением N=\{x_1,...,x_m\}. Пусть определены события E_1=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\} и E_2=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\,\ |r\cap T|\geqslant \frac{\epsilon m}{2}}. Если известно P(E_2|E_1)\geqslant \frac 1 2, что является верным относительно P(E_1) и P(E_2)?
Для событий A_1,...,A_n для любого i и любого J \in\{1,...,n\} при выполнении некоторого ограничения на множество J выполняется равенство P(A_i | \bigcap\limits_{j\in J}\overline {A_j})\leqslant x_i. Какое условие накладывается на множество J?
Для событий A_1,...,A_n для любого i и любого J \in\{1,...,n\} при выполнении некоторого ограничения на множество J выполняется равенство P(A_i | \bigcap\limits_{j\in J}\overline {A_j})\leqslant x_i. Какое условие накладывается на множество J?