База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Пусть \xi_1,...,\xi_n, каждая из которых принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p. Согласно усиленному закону больших чисел для схемы Бернулли c каким самым сильным типом сходимости случайная величина \frac{\xi_1+...+\xi_n} {n} сходится при n \to \infty к p?

(Отметьте один правильный вариант ответа.)

Варианты ответа
почти наверное(Верный ответ)
по вероятности
по распределению
в среднем
Похожие вопросы
Пусть \xi_1,...,\xi_n, каждая из которых принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p. Согласно усиленному закону больших чисел для схемы Бернулли к какой величине почти наверное сходится случайная величина \frac{\xi_1+...+\xi_n} {n} при n \to \infty?
Пусть \xi_1,...,\xi_n - последовательность независимых в совокупности случайных величин, для которых дисперсия конечна D(\xi_i)<\infty и сходится ряд \sum\limits_{n=1}^{\infty}\frac{D\xi_n}{n^2}\infty. С каким типом сходимости \frac {\xi_1+...+\xi_n-M(\xi_1+...+\xi_n)}{n} сходится к 0 при n\to \infty?
Пусть \xi_1,...,\xi_n - последовательность независимых в совокупности и одинакового распределенных случайных величин, для которых математическое ожидание конечно M(\xi_1)<\infty. С каким типом сходимости \frac {\xi_1+...+\xi_n}{n} сходится к M(\xi_1) при n\to \infty?
Имеется бесконечная последовательность одинаково распределенных и независимых случайных величин \xi_1,...,\xi_n,..., у которых математическое ожидание конечноM|\xi_1|<\infty. C каким самым сильным типом сходимости при n\to\infty последоваетельность случайных величин \frac{\xi_1+...+\xi_n} n сходится к M(\xi_1)?
Имеется бесконечная последовательность одинаково распределенных и независимых случайных величин \xi_1,....,\xi_n,.... Обозначим a:=M\xi_1;\ \sigma^2:=D\xi_1>0. Тогда с каким типом сходимости при n\to\infty случайная величина \frac{\xi_1+....+\xi_n-na}{\sqrt{\sigma^2 n}} сходится к \eta\sim N(0;1)?
Пусть случайные величины \xi_1,...,\xi_n, определенные на некотором \Omega, если для любого a>0 при n\to \infty выполняется условие P(|\xi_n-\xi|>a)\to 0, то говорят, что \xi_n сходится к \xi...
Пусть \A_1,...,\A_n,... бесконечная последовательность независимых событий: P(A_i)=p. Положим \xi_i=I_{A_i}. Тогда с каким самым сильным из предложенных типом сходимости при n \to \infty случайная величина \frac 1 n \sum\limits_{i=1}^n I_{A_i}-P(A_1) сходится к 0?
Если для последовательности случайных величин \xi_1,...,\xi_n при n\to \infty выполняется условие F_{\xi_n}(x)\to F_{\xi}(x) в любой x- точки непрерывности F_{\xi}(x), то говорят, что \xi_n сходится к \xi...
Пусть случайные величины \xi_1,...,\xi_n, определенные на некотором \Omega. Если выполняется условие P(\lim\limits_{n\to \infty}\xi_n-\xi)=1, то говорят, что \xi_n сходится к \xi...
Пусть G(n,p) -случайный граф, множество, состоящее из n вершин, а каждое ребро проводим с вероятностью p, которая независит от вероятности проведения других ребер и может зависеть от n. Пусть случайная величина T_n - число треугольников в случайном графе. Если pn\to \infty, то чему ассимптотически равна величина \frac {DT_n}{(MT_n)^2}?