База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Чему равно t_n - количество различных (как графы с занумерованными вершинами) деревьев на n=4 вершинах?

(Ответ необходимо ввести в поле ввода.)

Варианты ответа
Похожие вопросы
Чему равно t_n - количество различных (как графы с занумерованными вершинами) деревьев на n вершинах?
Чему равно t_n - количество различных (как графы с занумерованными вершинами) деревьев на n=5 вершинах?
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение F(n,r) показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение C_n^k показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение \frac{(r-1)!} {2} показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot r \cdot n^{n-1-r} выражение r \cdot n^{n-1-r} показывает...
В формуле оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах U_n=\sum\limits_{r=3}^{n}C_n^k\cdot\frac{(r-1)!} {2} \cdot F(n,r) выражение C_n^k\cdot\frac{(r-1)!} {2} показывает...
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_1?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_2?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right).При указанном интервале суммирования для S_2, что является нижней оценкой величины \frac{r(r-1)}{2n}?