База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Пусть A_1,...,A_n события. Формулировка "любое событие A_i независит от остальных событий кроме не более чем dштук" означает, что ...

(Отметьте один правильный вариант ответа.)

Варианты ответа
из множества \{A_1,...,A_{i-1},A_{i+1},...,A_n\} найдется подмножество \{A_{i_1},...,A_{i_{n-d}}\}, состоящее из событий, от совокупности которых A_i не зависит
из множества \{A_1,...,A_{i-1},A_{i+1},...,A_n\} найдется подмножество \{A_{i_1},...,A_{i_{n}}\}, состоящее из событий, от совокупности которых A_i не зависит
из множества \{A_1,...,A_{i-1},A_{i+1},...,A_n\} найдется подмножество \{A_{i_1},...,A_{i_{n-d+1}}\}, состоящее из событий, от совокупности которых A_i не зависит
из множества \{A_1,...,A_{i-1},A_{i+1},...,A_n\} найдется подмножество \{A_{i_1},...,A_{i_{n-d-1}}\}, состоящее из событий, от совокупности которых A_i не зависит(Верный ответ)
Похожие вопросы
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_1)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_i)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_1)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
Пусть событие A_i состоит в том, что в случайной раскраске i-ая по счету клика K_s в графе K_n целиком красная. При каком условии событие A_i независит от совокупности всех A_j?
Пусть n \geqslant 9.Пусть M_1,... n-элементные подмножества какого-то множества, причем каждый элемент этого множества принадлежит не более чем n множествам M_i, тогда существует одноцветная раскраска данного n-элементного подмножества. Пусть событие A_i состоит в том, что M_i множество одноцветно. Чему равна вероятность A_i?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие A_i состоит в том, что в случайной раскраске i-ая по счету клика K_s в графе K_n целиком красная. Чему равна вероятность события A_i?
Рассмотрим все возможные способы покрасить полный граф K_n в два цвета - красный и синий. Пусть событие A_i состоит в том, что в случайной раскраске i-ая по счету клика K_s в графе K_n целиком красная. Чему равна вероятность события A_i?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i-состоит в том, что i-ый треугольник целиком красный и B_i-состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины A_i орграфа зависимостей в вершины A_j?
Рассмотрим случайную раскраску полного графа K_n на nвершинах в красный и синий цвета. Пусть p-вероятность покрасить ребро в красный цвет и 1-p - вероятность покрасить ребро в синий цвет. Определим события A_1,...,A_{C_n^3};B_1,...,B_{C_n^t}, где A_i состоит в том, что i-ый треугольник целиком красный и B_i состоит в том, что i-ая клика размера t целиком синяя. Если для некоторого события A_i построен орграф зависимостей, то какое выражение позволит сверху оценить количество ребер, которые выйдут из вершины A_i орграфа зависимостей в вершины B_i?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?