База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

В соответствии со свойствами квантовой механики формула \PP(z_1,\dots,z_k|\,\rho)= \Tr(X^{(z_1)}\otimes\ldots\otimes X^{(z_k)}\rho) равна:

(Ответ считается верным, если отмечены все правильные варианты ответов.)

Варианты ответа
\prod_{j=1}^{k} \PP(z_j|\rho_x)(Верный ответ)
\prod_{j=1}^{k} \Tr(X^{(z_j)}\rho_x)(Верный ответ)
\sum_{j=1}^{k} \Tr(X^{(z_j)}\rho_x)
Похожие вопросы
Какому классу принадлежит функция F\colon \cb^n\to \{0,\,1,\,\}, если существует однородная последовательность квантовых схем полиномиального по n размера, реализующих такие операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, что F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0.
Как называется следующая формула: \PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \sum\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
В случае изометрического вложение V\colon \BB^{\otimes n} \double\to \BB^{\otimes N} в пространство большей размерности, задаваемое формулой \ket\xi\stackrel{\scriptscriptstyle V}{\mapsto} \ket\xi\otimes\ket{0^{N-n}}, матрица плотности \rho преобразуется:
Какому условию должно удовлетворять p_1 в неравенстве F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0, если F\in\BQNP
Какому условию должно удовлетворять \eps в неравенстве F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0, если F\in\BQNP
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Определите вид оператора \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U, действующего на пространстве
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Из каких слагаемых состоит гамильтониан, сопоставляемый схеме, действующие на пространстве \calL=\BB^{\otimes N}\otimes \CC^{L+1}: