База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Чему равна вероятность получения базисного состояния, x при измерении состояния \ket\psi=\sum_x c_x\ket{x}:

(Отметьте один правильный вариант ответа.)

Варианты ответа
\PP(\ket\psi, x)=c_x.
\PP(\ket\psi, x)=|c_x|.
\PP(\ket\psi, x)=|c_x|^2.(Верный ответ)
Похожие вопросы
Чему равна вероятность "события" \calM для квантового состояния, задаваемого матрицей плотности \rho и подпространства \calM:
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:
Чему равна суммарная длина (F(x),z) и (x,O^{N-n}) в формуле \sum_{z}^{} \bigl| \langle F(x),z|\,U\,|x,0^{N-n}\rangle\bigr|^2 \geq \varepsilon, которой должна удовлетворять квантовая схема U=U_L\cdot\ldots\cdot U_2U_1, вычисляющая F:
Чему равна вероятность того, что что k случайных сдвигов не покрывают фиксированный элемент, где G - некоторая группа, а X - подмножество G:
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Чему равна вероятность того, что случайный сдвиг X не покрывает (не содержит) некоторый фиксированный элемент, где G - некоторая группа, а X - подмножество G:
Если Z - множество троек вида (\langle\text{описание k-локального гамильтониана } H\rangle, a, b), где k=O(1), 0\leq a<b, b-a=\Omega(n^{-\alpha}), (a>0), то для z\in Z выполняются условия:
Если A_1, A_2 - неотрицательные операторы, \calL_1, \calL_2 - их нулевые подпространства, причем \calL_1\cap \calL_2=0, ненулевые собственные числа A_1 и A_2 не меньше v, где \vt=\vt(\calL_1,\calL_2) - угол между \calL_1 и \calL_2, то справедливым является равенство:
Чем объясняется то, что вероятность события \Prob[G\setminus\big( \bigcup_i g_iX\big)\ne\emptyset] не больше |G|\left(1-|X|/|G|\right)^k, где G - некоторая группа, а X - подмножество G: