База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Каким условиям должны удовлетворять операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, реализуемые однородной последовательностью квантовых схем полиномиального по n размера, чтобы функция F\colon \cb^n\to \{0,\,1,\,\} принадлежала классу BQNP:

(Отметьте один правильный вариант ответа.)

Варианты ответа
F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0
F(x)=1 & \Longrightarrow & \exists\, y\:\big((|y|<q(|x|))\wedge(R(x,y)=1)\big),\\ F(x)=0 &>\Longrightarrow & \forall\, y\: \big((|y|<q(|x|))\Rightarrow(R(x,y)=0)\big)
F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0(Верный ответ)
Похожие вопросы
Какому классу принадлежит функция F\colon \cb^n\to \{0,\,1,\,\}, если существует однородная последовательность квантовых схем полиномиального по n размера, реализующих такие операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, что F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0.
В случае изометрического вложение V\colon \BB^{\otimes n} \double\to \BB^{\otimes N} в пространство большей размерности, задаваемое формулой \ket\xi\stackrel{\scriptscriptstyle V}{\mapsto} \ket\xi\otimes\ket{0^{N-n}}, матрица плотности \rho преобразуется:
Какому условию должно удовлетворять \eps в неравенстве F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0, если F\in\BQNP
Какому условию должно удовлетворять p_1 в неравенстве F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0, если F\in\BQNP
Если существует квантовый алгоритм вычисления функции F\colon\cb^*\to\cb^*, работающий за время O(n^d) для некоторой константы d, то функция F\colon\cb^*\to\cb^*
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Если на пространстве \calN=\calN_1\otimes\calN_2 задана матрица плотности вида \rho_1\otimes\rho_2 и имеется два подпространства \calM_1\subseteq \calN_1, \calM_2\subseteq \calN_2, то справедливо равентство: