База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Если на совместное состояние системы и прибора \rho\otimes\ket{0^m}\bra{0^m} подействовать измеряющим оператором W, то получим состояние:

(Отметьте один правильный вариант ответа.)

Варианты ответа
W\Bigl(\rho\otimes\ket{0^m}\bra{0^m}\Bigr)W^\dagger =\prod_{j}^{}\rho\Pi_{\calL_j}\otimes U_j\ket{0}\bra{0}U_j^\dagger
W\Bigl(\rho\otimes\ket{0^m}\bra{0^m}\Bigr)W^\dagger =\sum_{j}^{}\Pi_{\calL_j}\rho\Pi_{\calL_j}\otimes U_j\ket{0}\bra{0}U_j^\dagger(Верный ответ)
W\Bigl(\rho\otimes\ket{0^m}\bra{0^m}\Bigr)W^\dagger =\prod_{j}^{}\Pi_{\calL_j}\rho\Pi_{\calL_j}\otimes U_j\ket{0}\bra{0}U_j^\dagger
Похожие вопросы
Если имеется чистое состояние \ket{\psi}\in\calN\otimes\calF, то разложение Шмидта имеет вид (0<\lambda_j\le 1, \{\ket{\xi_j}\}\subset\calN и \{\ket{\eta_j}\}\subset\calF - ортонормированные вектора):
Какому классу принадлежит функция F\colon \cb^n\to \{0,\,1,\,\}, если существует однородная последовательность квантовых схем полиномиального по n размера, реализующих такие операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, что F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0.
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Если Z - множество троек вида (\langle\text{описание k-локального гамильтониана } H\rangle, a, b), где k=O(1), 0\leq a<b, b-a=\Omega(n^{-\alpha}), (a>0), то для z\in Z выполняются условия:
Если к состоянию, описываемому матрицей плотности \rho\in\LL(\calN), подсоединить прибор с выделенным базисом, то совместное состояние системы и прибора будет описываться матрицей плотности вида:
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Если на пространстве \calN=\calN_1\otimes\calN_2 задана матрица плотности вида \rho_1\otimes\rho_2 и имеется два подпространства \calM_1\subseteq \calN_1, \calM_2\subseteq \calN_2, то справедливо равентство:
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
В случае изометрического вложение V\colon \BB^{\otimes n} \double\to \BB^{\otimes N} в пространство большей размерности, задаваемое формулой \ket\xi\stackrel{\scriptscriptstyle V}{\mapsto} \ket\xi\otimes\ket{0^{N-n}}, матрица плотности \rho преобразуется:
Если A_1, A_2 - неотрицательные операторы, \calL_1, \calL_2 - их нулевые подпространства, причем \calL_1\cap \calL_2=0, ненулевые собственные числа A_1 и A_2 не меньше v, где \vt=\vt(\calL_1,\calL_2) - угол между \calL_1 и \calL_2, то справедливым является равенство: