База ответов ИНТУИТ

Линейная алгебра

<<- Назад к вопросам

Пусть e_{1},...,e_{n} - ортонормированный базис евклидова пространства. Какое выражение будет для скалярного произведения прозвольных векторов x и y через их координаты в базисе e_{1}+e_{2},e_{2},e_{3},...,e_{n}?

(Отметьте один правильный вариант ответа.)

Варианты ответа
(x,y)=(2\alpha _{1}\beta _{1}+\alpha _{2}\beta _{2}+\alpha _{2}\beta_{1})+(\alpha _{2}\beta _{2}+\alpha _{3}\beta _{3}+...+\alpha _{n}\beta _{n})(Верный ответ)
(x,y)=\lambda _{1}\alpha _{1}\beta _{1}+\lambda _{2}\alpha _{2}\beta_{2}+...+\lambda _{n}\alpha _{n}\beta _{n}
(x,y)=\lambda _{1}^{2}\alpha _{1}\beta _{1}+\lambda _{2}^{2}\alpha_{2}\beta _{2}+...+\lambda _{n}^{2}\alpha _{n}\beta _{n}
Похожие вопросы
Пусть e_{1},...,e_{n} - ортонормированный базис евклидова пространства. Какое выражение будет для скалярного произведения прозвольных векторов x и y через их координаты в базисе \lambda _{1}e_{1},\lambda _{2}e_{2},...,\lambda _{n}e_{n}, где \lambda _{1},\lambda _{2},...,\lambda _{n}?
Пусть линейный оператор в пространстве V в базисе \left( e_{1},\ ...,\ e_{4}\right) имеет матрицу
\left( \begin{array}{cccc}0 & 1 & 2 & 3 \\ 5 & 4 & 0 & -1 \\ 3 & 2 & 0 & 3 \\ 6 & 1 & -1 & 7%\end{array}%\right)
Какая будет матрица этого оператора в базисе \left( e_{2},\ e_{1},\ e_{3},\ e_{4}\right)?
Пусть линейный оператор в пространстве R\left[ x\right] _{2} имеет в базисе (1,\ x,\ x^{2}) матрицу
\left( \begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0%\end{array}%\right)
Какая будет его матрица в базисе \left( 3x^{2}+2x+1,\ x^{2}+3x+2,\ 2x^{2}+x+3\right)?
Линейное преобразование \varphi в базисе e_{1},e_{2},e_{3},e_{4} имеет матрицу
\left( \begin{array}{cccc}1 & 2 & 0 & 1 \\ 3 & 0 & -1 & 2 \\ 2 & 5 & 3 & 1 \\ 1 & 2 & 1 & 3%\end{array}%\right)
. Как будет выглядеть матрица этого же преобразования в базисе: e_{1},e_{3},e_{2},e_{4}?
Линейное преобразование \varphi в базисе e_{1},e_{2},e_{3},e_{4} имеет матрицу
\left( \begin{array}{ccc}15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6%\end{array}%\right)
Как будет выглядеть матрица в базисе f_{1}=2e_{1}+3e_{2}+e_{3},\ \ f_{2}=3e_{1}+4e_{2}+e_{3},\ \f_{3}=e_{1}+2e_{2}+2e_{3}?
Линейное преобразование \varphi в базисе a_{1}=(8,-6,7),\\ a_{2}=(-16,7,-13),\\ a_{3}=(9,-3,7) имеет матрицу
\left( \begin{array}{ccc}1 & -18 & 15 \\ -1 & -22 & 15 \\ 1 & -25 & 22%\end{array}%\right)
Как будет выглядеть матрица в базисе b_{1}=(1,-2,1),\ \ b_{2}=(3,-1,2),\ \ b_{3}=(2,1,2)?
Пусть линейный оператор в пространстве R^{3} имеет в базисе \left( \left( 8,\ -6,\ 7\right) ,\ \left( -16,\ 7,\ -13\right) ,\ \left(9,\ -3,\ 7\right) \right) матрицу
\left( \begin{array}{ccc}1 & -18 & 15 \\ -1 & -22 & 20 \\ 1 & -25 & 22%\end{array}%\right)
Какая будет его матрица в базисе \left( \left( 1,\ -2,\ 1\right) ,\ \left( 3,\ -1,\ 2\right) ,\ \left( 2,\1,\ 2\right) \right)?
В пространстве многочленов M^{2} задано скалярное произведение (f,g)=a_{0}b_{0}+a_{1}b_{1}+a_{2}b_{2}, гдеf(t)=a_{0}+a_{1}t+a_{2}t^{2}, \  \ g(t)=b_{0}+b_{1}+b_{2}t^{2}. Как будет выглядеть матрица оператора дифференцирования А и сопряженного оператора A^{\ast } в базисе (1,t,t^{2})?
В пространстве многочленов M^{2} задано скалярное произведение (f,g)=a_{0}b_{0}+a_{1}b_{1}+a_{2}b_{2}, гдеf(t)=a_{0}+a_{1}t+a_{2}t^{2}, \  \ g(t)=b_{0}+b_{1}+b_{2}t^{2}. Как будет выглядеть матрица оператора дифференцирования А и сопряженного оператора A^{\ast } в базисе
\left( 1,t,\frac{3}{2}t^{2}-\frac{1}{2}\right)
Какой биортогональный базис будет иметь базис пространства R_{4}:
e_{1}=(1,1,1,1)\\e_{2}=(0,1,1,1)\\e_{3}=(0,0,1,1)\\e_{4}=(0,0,0,1)