База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

По определению (Гейне), функция f(x) называется непрерывной в точке x_0, если \forall \{x_n\} \to x_0, соответствующая \{f(x_n)\}

(Отметьте один правильный вариант ответа.)

Варианты ответа
сходится к  0
расходится
сходится к A \neq 0
сходится к f(x_0)(Верный ответ)
Похожие вопросы
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет максимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет минимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет экстремум, если её производная f'(x) при переходе через точку x_0
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка, непрерывная в x_0 и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - точка максимума f(x), если
По определению (\varepsilon - \delta), функция f(x) называется непрерывной в точке x_0, если
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=x если |x|\le 1 и f(x)=1, если |x|> 1
По определению (\Delta), функция f(x) называется непрерывной в точке x_0, если \lim\limits_{\Delta x \to 0} {\Delta y}
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - не является точкой минимума и максимума f(x), если
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=\sin \frac 1x если x\neq 0 и f(0)=0
Пусть для функции f(x) в окрестности точки x_0 существует производная n-го порядка и f^{(n)}(x_0) \neg 0 - первая отличная от нуля производная. Тогда x_0 - точка минимуа f(x), если