База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

Если функция u = \varphi (x) непрерывна в точке x_0, а функция y = f(u) непрерывна в точке u_0 = \varphi (x_0), то сложная функция y = f[\varphi (x)]

(Отметьте один правильный вариант ответа.)

Варианты ответа
непрерывна в точке x_0(Верный ответ)
разрывна в точке x_0
\exists \lim\limits_{x \to x_0} {f[\varphi (x)]} \neq f[\varphi (x)]
Похожие вопросы
Каким условиям должны удовлетворять функции y = f(u), u = \varphi (x) в точках u_0 = \varphi (x_0) и x = x_0 соответственно , чтобы сложная функция y = f[\varphi (x)] была дифференцируемой в точке x = x_0:
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет минимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет максимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет экстремум, если её производная f'(x) при переходе через точку x_0
Пусть функция y = f(x) задана параметрически: x = \varphi (t), y = \psi (t) . Каким условиям должна удовлетворять функция x = \varphi (t) на интервале (\alpha , \beta) для того, чтобы существовала производная y'_x:
Пусть функция y = f(x) задана параметрически: x = \varphi (t), y = \psi (t) . Каким условиям должна удовлетворять функция x = \psi (t) на интервале (\alpha , \beta) для того, чтобы существовала производная y'_x:
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=x если |x|\le 1 и f(x)=1, если |x|> 1
Доопределить функцию f(x) в точке x=0 так, чтобы получившаяся функция была непрерывна. В качестве ответа введите значение f(0). f(x)=x \arctan \frac 1x
Доопределить функцию f(x) в точке x=0 так, чтобы получившаяся функция была непрерывна. В качестве ответа введите значение f(0). f(x)=\frac {e^{\sin 2x}-1}{2x}
Доопределить функцию f(x) в точке x=0 так, чтобы получившаяся функция была непрерывна. В качестве ответа введите значение f(0). f(x)=(1+x)^{\frac 1x}