База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Присоединенная функция построена в виде так называемого барьера:G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i-g_i(\overline{X}))(g_i(\overline{X})-a_i)}. При этом ограничения в задаче имеют вид:

(Отметьте один правильный вариант ответа.)

Варианты ответа
a_i < g_i (\overline{X}) < b_i, \; i=\overline{1,m} (Верный ответ)
a_i < g_i (\overline{X}) \le b_i, \; i=\overline{1,m}
a_i \le g_i (\overline{X}) < b_i, \; i=\overline{1,m}
Похожие вопросы
Пусть a_i < g_i (\overline{X}) < b_i, \; i=overline{1,m}. Тогда присоединенная функция G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i-g_i(\overline{X}))(g_i(\overline{X})-a_i)}построена в виде:
Пусть ограничения в задаче имеют вид чистых неравенств: a_i < g_i(\overline{X})<b_i , \; i=\overline{1,m}. Тогда согласно метода Кэррола присоединенная функция имеет вид:
Задача линейного программирования сформулирована в каноническом виде:максимизировать \sum c_i x_i, \; i=1,\ldots,n. Тогда условия ограничения имеют вид:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m согласно симплекс – методу, если ограничения задачи линейного программирования имеют вид:
Функция f(x) достигает локального максимума в точке x^0 = (x^0_1, x^0_2 ,\ldots, x^0_n) и при этом имеет место равенство f(x^0_1, x^0_2 ,\ldots, x^0_n) \ge; f(x_1, x_2, \ldots, x_n). Это справедливо:
Пусть уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m, которое является допустимым, т.е. x^*_1 \ge 0, x^*_2 \ge 0, \ldots, x^*_m \ge 0. При этом справедливо равенство: A1x1r+A2x2r+...+Amxmr = Ar. Это значит, что:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Новое решение x'_1, x'_2, \ldots, x'_m, x'_r связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r Тогда уравнение имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m.Новое решение x'_1, x'_2, \ldots, x'_m, x'_r базисное решение связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Данное решение будет допустимым, если: