База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть ограничения в задаче имеют вид чистых неравенств: a_i < g_i(\overline{X})<b_i , \; i=\overline{1,m}. Тогда согласно метода Кэррола присоединенная функция имеет вид:

(Отметьте один правильный вариант ответа.)

Варианты ответа
G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i-g_i(\overline{X}))(g_i(\overline{X})-a_i)} (Верный ответ)
G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i+g_i(\overline{X}))(g_i(\overline{X})-a_i)}
G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i+g_i(\overline{X}))(g_i(\overline{X})+a_i)}
Похожие вопросы
Присоединенная функция построена в виде так называемого барьера:G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i-g_i(\overline{X}))(g_i(\overline{X})-a_i)}. При этом ограничения в задаче имеют вид:
Пусть a_i < g_i (\overline{X}) < b_i, \; i=overline{1,m}. Тогда присоединенная функция G(\overline{X})=\sum_{i=1}^m \frac{1}{(b_i-g_i(\overline{X}))(g_i(\overline{X})-a_i)}построена в виде:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m согласно симплекс – методу, если ограничения задачи линейного программирования имеют вид:
Задача линейного программирования сформулирована в каноническом виде:максимизировать \sum c_i x_i, \; i=1,\ldots,n. Тогда условия ограничения имеют вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид:
Уравнение A_1x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Новое решение x'_1, x'_2, \ldots, x'_m, x'_r связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r Тогда уравнение имеет вид:
Пусть ограничения задачи линейного программирования записаны в виде: A1x1+A2x2+...+Anxn+An+1xn+1+...+An+mxn+m=A0, где А1,...,Аm – множество линейно независимых векторов. Согласно симплекс – метода, базисное решение x^*_1, x^*_2, \ldots, x^*_m определяется уравнением:
Пусть некоторое базисное решение y системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда вектора матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, составляющие сопряженный базис, являются:
Пусть для некоторой системы, состоящей из m линейно - независимых векторов матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, базисное решение y соответствующей системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда данная система носит название: