База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть требуется изготовить 90 деталей. Их можно изготовить двумя технологическими способами: 1 способ: х1+3х12, 2 способ: 222. Затраты связаны функциональной зависимостью. Сколько изделий может быть изготовлено каждым способом?

(Отметьте один правильный вариант ответа.)

Варианты ответа
x1=56, x2=34
x1=23, x2=67(Верный ответ)
x1=58, x2=32
Похожие вопросы
Пусть требуется изготовить 120 деталей. Их можно изготовить двумя технологическими способами: 1 способ: х112, 2 способ: 2+2х22. Затраты связаны функциональной зависимостью. Сколько изделий может быть изготовлено каждым способом?
Пусть требуется изготовить 180 деталей. Их можно изготовить двумя технологическими способами: 1 способ: 112, 2 способ: 222. Затраты связаны функциональной зависимостью. Сколько изделий может быть изготовлено каждым способом?
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Пусть x' – точка локального минимума рассматриваемой задачи. Тогда x' является:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 - значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, то:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Пусть в некоторой точке x* ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,nравен m, и существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых Δf(x*) + ΣλiΔhi(x) = 0, i = 1,...,m. Тогда в точке x*:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения: