База ответов ИНТУИТ

Дискретный анализ

<<- Назад к вопросам

Что из перечисленного ниже есть система различных представителей для системы подмножеств S_1 =\{ 1,2,3,4 \}, S_2 =\{ 1,2 \}, S_3 =\{ 2 \}, S_4 =\{ 2 \} исходного множества S=\{ 1,2,3,4 \}

(Отметьте один правильный вариант ответа.)

Варианты ответа
a_1 =4, \ a_2 =1, \ a_3 =2, \ a_4 =2,\ a_5 =3
a_1 =3, \ a_2 =1, \ a_3 =2, \ a_4 =2
не существует системы различных представителей для данной системы подмножеств(Верный ответ)
Похожие вопросы
Что из перечисленного ниже есть система различных представителей для системы подмножеств S_1 =\{ 1,2,3,4 \}, S_2 =\{ 2,5 \}, S_3 =\{ 2,5 \}, S_4 =\{ 2,5 \} исходного множества S=\{ 1,2,3,4,5 \}
Что из перечисленного ниже есть система различных представителей для системы подмножеств S_1 =\{ 1,2,3,4 \}, S_2 =\{ 1,2,5 \}, S_3 =\{ 2,5 \}, S_4 =\{ 2,5 \} исходного множества S=\{ 1,2,3,4,5 \}:
Укажите возможные ситуации для системы общих представителей (c_1,с_2,...,c_m) при разбиениях множества S S=A_1 \cup A_2 \cup ... \cup A_m и S=B_1 \cup B_2 \cup ... \cup B_n, для i=1,2,...,m, j=1,2,...,m:
При построении С.Р.П. для совокупности из n множеств M(S)= \{ S_1, ..., S_n \} для первых r-1 множеств, r<n, удалось выбрать различных представителей, но все элементы множества S_r уже использованы в качестве представителей предыдущих множеств. Тогда:
Для системы общих представителей (c_1,с_2,...,c_m) при разбиениях множества S S=A_1 \cup A_2 \cup ... \cup A_m и S=B_1 \cup B_2 \cup ... \cup B_n справедливо, для i=1,2,...,m:
Сколько существует перестановок элементов множества X, состоящего из n элементов, таких, что ровно k, k \le n, элементов стоят на своих местах, а остальные n-k элементов расположены случайно:
Сколько существует способов разместить n различных объектов по p различным ящикам, при условии, что в каждом ящике находится n_1,n_2,...,n_p объектов соответственно, n_1+n_2+...+n_p=n, и один из размещаемых объектов уже лежит в ящике i:
Для совокупности из n множеств M(S)= \{ S_1, ..., S_n \} для каждого i=1,2...,nпоследовательно выбрали a_i \in S_i, \ a_i \ne a_j \ j<i. Тогда выбранный набор \{ a_1, a_2, ... a_n \}:
Количество разбиений 5 объектов на 3 непустых класса равно 25. Вычислите количество сюръективных отображений из множества, содержащего 5 элементов, на множество, содержащее 3 элемента:
Количество разбиений 6 объектов на 4 непустых класса равно 65. Вычислите количество сюръективных отображений из множества, содержащего 6 элементов, на множество, содержащее 4 элемента: