База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Для событий A_1,...,A_n для любого i и любого J \in\{1,...,n\}, и если i\notin J выполняется равенство P(A_i | \bigcap\limits_{j\in J} A_j)\leqslant x_i.Чему равна P(A_i | \bigcap\limits_{j\in J} A_j) если J=\varnothing?

(Отметьте один правильный вариант ответа.)

Варианты ответа
0
x_i
1-P(A_i)
P(A_i)(Верный ответ)
Похожие вопросы
Для событий A_1,...,A_n для любого i и любого J \in\{1,...,n\} при выполнении некоторого ограничения на множество J выполняется равенство P(A_i | \bigcap\limits_{j\in J}\overline {A_j})\leqslant x_i. Какое условие накладывается на множество J?
Для событий A_1,...,A_n для любого i и любого J \in\{1,...,n\} при выполнении некоторого ограничения на множество J выполняется равенство P(A_i | \bigcap\limits_{j\in J}\overline {A_j})\leqslant x_i. Какое условие накладывается на множество J?
A_1,...,A_n - события. Пусть G(V,E) произвольный орграф зависимостей и существуют x_1,...,x_n \in [0,1) такие, что для любого i выполнено P(A_i)\leqslant x_j \cdot \prod\limits_{j:(A_i,A_j) \in E} (1-x_j). Тогда ...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Имеется ранжированное пространство ({\cal X}, {\cal R}), есть некоторое конечное подмножество A из {\cal X} A\subset{\cal X}. и есть число \epsilon \in (0;1). Назовем N\subset{\cal X} \epsilon-сетью для A, если N\cap (r\cap A)\ne \varnothing для любого r \in R...
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
A_1,...,A_n- события. Пусть G(V,E) произвольный орграф зависимостей. И существуют x_1,...,x_n \in [0,1), что выполняется P\left(\bigcap_{i=1}^n \overline{A_i}\right)\leqslant \prod\limits_{j=1}^n (1-x_j). Что верно относительно P(A_i)?
Пусть A\subset {\cal X},\ |A|=n,\ \epsilon\in (0;1). Из множества A выбираем случайные подмножества N и Tиз m, где m=\left[\frac{8d}{\epsilon} log_2 \frac{8d}{\epsilon} \right] по схеме выбора с возращением N=\{x_1,...,x_m\}. Пусть определены события E_1=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\} и E_2=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\,\ |r\cap T|\geqslant \frac{\epsilon m}{2}}. Если известно P(E_2|E_1)\geqslant \frac 1 2, что является верным относительно P(E_1) и P(E_2)?