База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Пусть \A_1,...,\A_n последовательность независимых событий: P(A_i)=p. Положим \xi_i=I_{A_i}. Тогда к какой величине при n \to \infty сходится \frac 1 n \sum\limits_{i=1}^n I_{A_i}-P(A_1) почти наверное?

(Ответ необходимо ввести в поле ввода.)

Варианты ответа
Похожие вопросы
Пусть \A_1,...,\A_n,... бесконечная последовательность независимых событий: P(A_i)=p. Положим \xi_i=I_{A_i}. Тогда с каким самым сильным из предложенных типом сходимости при n \to \infty случайная величина \frac 1 n \sum\limits_{i=1}^n I_{A_i}-P(A_1) сходится к 0?
Пусть случайное событие определено так A_i^x=\{\xi_i\leqslant x\},\ i=1,...;\ x\in R. Имеется A_1^x,...,A_n^x,... бесконечная последовательность событий. Тогда к чему \sup\limits_{x\in R}\left|\frac 1 n \sum\limits_{i=1}^{\infty}I_{A_i^x}-P(A_i^x)\right | сходится почти наверное?
Пусть \xi_1,...,\xi_n, каждая из которых принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p. Согласно усиленному закону больших чисел для схемы Бернулли к какой величине почти наверное сходится случайная величина \frac{\xi_1+...+\xi_n} {n} при n \to \infty?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Допустим, A_1 \in {\cal F}. Выберите все множества, которые в таком случае также попадают в {\cal F} кроме A_1?
Пусть \xi_1,...,\xi_n - последовательность независимых в совокупности случайных величин, для которых дисперсия конечна D(\xi_i)<\infty и сходится ряд \sum\limits_{n=1}^{\infty}\frac{D\xi_n}{n^2}\infty. С каким типом сходимости \frac {\xi_1+...+\xi_n-M(\xi_1+...+\xi_n)}{n} сходится к 0 при n\to \infty?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что является наиболее точной верхней оценкой мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно мощности {\cal F}\cap{\cal A}?
Имеется множество натуральных чисел от 1 до n. И определены следуюшие подмножества A_1=\{1,2,...,k\}, A_2=\{2,3,...,k+1\},...,A_{n-k-1}=\{n-k-1,...,n\},..., A_{n}=\{n,1,...,k-1\}. Обозначим {\cal A }=\{ A_1,...,A_n \}. Рассмотрим {\cal F }=\{ F_1,...,F_s \} - совокупность независимых множеств вершин Кнезеровского графа KG(n,k). Что верно относительно | {\cal F}\cap{\cal A}|?
Как формулируется закон больших чисел (в форме Чебышева)? Пусть \xi_1,...,\xi_n последовательность одинаково распределенных независимых в совокупности, у которых математические ожидания случайных величин и их квадратов конечны M\xi_i,M\xi_i^2<\infty. Тогда \forall a>0 при n\to \infty...
Пусть A\subset {\cal X},\ |A|=n,\ \epsilon\in (0;1). Из множества A выбираем случайные подмножества N и Tиз m, где m=\left[\frac{8d}{\epsilon} log_2 \frac{8d}{\epsilon} \right] по схеме выбора с возращением N=\{x_1,...,x_m\}. Пусть определены события E_1=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\} и E_2=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\,\ |r\cap T|\geqslant \frac{\epsilon m}{2}}. Если известно P(E_2|E_1)\geqslant \frac 1 2, что является верным относительно P(E_1) и P(E_2)?