База ответов ИНТУИТ

Дискретный анализ и теория вероятностей

<<- Назад к вопросам

Пусть случайное событие определено так A_i^x=\{\xi_i\leqslant x\},\ i=1,...;\ x\in R. Имеется A_1^x,...,A_n^x,... бесконечная последовательность событий. Тогда к чему \sup\limits_{x\in R}\left|\frac 1 n \sum\limits_{i=1}^{\infty}I_{A_i^x}-P(A_i^x)\right | сходится почти наверное?

(Ответ необходимо ввести в поле ввода.)

Варианты ответа
Похожие вопросы
Пусть \A_1,...,\A_n последовательность независимых событий: P(A_i)=p. Положим \xi_i=I_{A_i}. Тогда к какой величине при n \to \infty сходится \frac 1 n \sum\limits_{i=1}^n I_{A_i}-P(A_1) почти наверное?
Пусть \A_1,...,\A_n,... бесконечная последовательность независимых событий: P(A_i)=p. Положим \xi_i=I_{A_i}. Тогда с каким самым сильным из предложенных типом сходимости при n \to \infty случайная величина \frac 1 n \sum\limits_{i=1}^n I_{A_i}-P(A_1) сходится к 0?
Пусть \xi_1,...,\xi_n - последовательность независимых в совокупности случайных величин, для которых дисперсия конечна D(\xi_i)<\infty и сходится ряд \sum\limits_{n=1}^{\infty}\frac{D\xi_n}{n^2}\infty. С каким типом сходимости \frac {\xi_1+...+\xi_n-M(\xi_1+...+\xi_n)}{n} сходится к 0 при n\to \infty?
Пусть A\subset {\cal X},\ |A|=n,\ \epsilon\in (0;1). Из множества A выбираем случайное подмножество N из m, где m=\left[\frac{8d}{\epsilon} log_2 \frac{8d}{\epsilon} \right] по схеме выбора с возращением N=\{x_1,...,x_m\}. Пусть определено событие E_1=\{\mathcal{9}\  r\in R:|r\cap A|\geqslant \epsilon n,r \cap N =\varnothing\}. Какое события является отрицанием события E_1?
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_1)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_1)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
Что согласно локальной леммы Ловаса является верным для событий, определенныx следующим образом? Пусть A_1,...,A_n события, для каждого из которых выполнено P(A_i)\leqslant p и любое событие A_i независит от остальных событий кроме не более чем dштук, причем и e(d+1)p \leqslant 1.Тогда ...
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right).При указанном интервале суммирования для S_2, что является нижней оценкой величины \frac{r(r-1)}{2n}?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_1?
При построении асимптотической оценки количества различных (как графы с занумерованными вершинами) унициклических графов с n вершинами и циклом, построенным на r вершинах, величина \sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)заменяется на сумму двух слагаемых S_1+S_2=\sum\limits_{r=3}^{\left[n^{0,6}\right]}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)+\sum\limits^{n}_{r= \left [n^{0,6} \right]+1}}\prod\limits_{j=1}^{r-1} \left (1-\frac{j} {n} \right)Чему равна асимптотическая оценка S_2?