База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Условные вероятности для оператора \prod\limits_{r=1}^s \Xi(U_a)[r,A] определяются, как (y_r- значение в r-ом бите):

(Отметьте один правильный вариант ответа.)

Варианты ответа
\PP(y_1,\dots, y_s\big| k)=\bigcup\limits_{r=1}^{s} \PP(y_r\big| k)
\PP(y_1,\dots, y_s\big| k)=\prod\limits_{r=1}^{s} \PP(y_r\big| k)(Верный ответ)
\PP(y_1,\dots, y_s\big| k)=\sum\limits_{r=1}^{s} \PP(y_r\big| k)
Похожие вопросы
Если Z - множество троек вида (\langle\text{описание k-локального гамильтониана } H\rangle, a, b), где k=O(1), 0\leq a<b, b-a=\Omega(n^{-\alpha}), (a>0), то для z\in Z выполняются условия:
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Если A_1, A_2 - неотрицательные операторы, \calL_1, \calL_2 - их нулевые подпространства, причем \calL_1\cap \calL_2=0, ненулевые собственные числа A_1 и A_2 не меньше v, где \vt=\vt(\calL_1,\calL_2) - угол между \calL_1 и \calL_2, то справедливым является равенство:
Если Z - множество троек вида \langle\text{описание квантовой схемы } W\rangle, p_0, p_1) описанием схемы - приближенная реализация в стандартном базисе, а p_1-p_0=\Omega(n^{-\alpha}) (a>0, n - размер описания схемы). Тогда для z\in\Z F(z)=1 выполняется:
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Чему равна суммарная длина (F(x),z) и (x,O^{N-n}) в формуле \sum_{z}^{} \bigl| \langle F(x),z|\,U\,|x,0^{N-n}\rangle\bigr|^2 \geq \varepsilon, которой должна удовлетворять квантовая схема U=U_L\cdot\ldots\cdot U_2U_1, вычисляющая F:
Чем объясняется то, что вероятность события \Prob[G\setminus\big( \bigcup_i g_iX\big)\ne\emptyset] не больше |G|\left(1-|X|/|G|\right)^k, где G - некоторая группа, а X - подмножество G:
Если унитарный оператор  U разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1, то  \Lambda(U)=\sum_{j} (\Pi_0+\lambda_j\Pi_1)\otimes\Pi_{\calL_j}= \sum_{j}^{} \begin{pmatrix} 1&0\\ 0&\lambda_j \end{pmatrix} \otimes\Pi_{\calL_j}. В этом случае условные вероятности будут равны:
Зная, что \Prob\left[\left|\frac{\sum\nolimits_{r=1}^{s}y_r}{s}-\PP(1\big|k)\right| >\delta\right]<2e^{-c\delta^{2}s}, где c>0 - константа, за сколько испытаний можно добиться вероятности ошибки \eps при фиксированном \delta:
Условием алгоритма проверки простоты числа n, определяющим что n - составное, где a - случайное среди чисел от 1 до n, l - нечетное, является: