База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Как называется оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j, если в пространстве состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j?

(Отметьте один правильный вариант ответа.)

Варианты ответа
унитарный
измеряющим(Верный ответ)
линейный
Похожие вопросы
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда всякий оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j будет называться:
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда измеряющим будет называться всяки оператор вида:
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Если унитарный оператор  U разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1, то  \Lambda(U)=\sum_{j} (\Pi_0+\lambda_j\Pi_1)\otimes\Pi_{\calL_j}= \sum_{j}^{} \begin{pmatrix} 1&0\\ 0&\lambda_j \end{pmatrix} \otimes\Pi_{\calL_j}. В этом случае условные вероятности будут равны:
Пусть \calN=\bigoplus_{j}\calN_j - разложение пространства \calN в прямую сумму взаимно ортогональных подпространств. Тогда для любой пары матриц плотности \rho, \gamma
Как называется следующая формула: \PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \sum\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
При отображении \LL(\calN) в \LL(\calN\otimes\calK), \calN - квантовая часть и \calK - классическая часть системы, результат является диагональным по отношению:
Если на пространстве \calN=\calN_1\otimes\calN_2 задана матрица плотности вида \rho_1\otimes\rho_2 и имеется два подпространства \calM_1\subseteq \calN_1, \calM_2\subseteq \calN_2, то справедливо равентство:
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?